Биомеханични аспекти на подводното плуване след стартове и завои: систематичен преглед
Б. Ангелов
Abstract: Цел: Целта на представеното изследване е да проучи наличната информация за ефектите от подводното плуване. През последните години, с напредъка и подобряването на техническите възможности на видео анализа, оборотите и подводните части заемат все по-голяма част от постиженията на противниците. Методи: Проведено е систематично търсене на литература чрез две електронни бази данни съгласно насоките на PRISMA, за да се оцени качеството на включените проучвания. Някои проучвания са фокусирани върху видео анализ на подводната част от плуването, извършено от ударен старт или стартов блок. Биомеханичният анализ на подводната част включва параметри на изтичане (дължина, честота и амплитуда), както и избрана сегментна кинематика. Резултати: Информацията за детерминантите на ефективността на UUS беше противоречива, отчасти поради несъответствия в дефиницията на кинематичните параметри. Трябва да се проведат допълнителни проучвания, при които системите за автоматично откриване на движение се прилагат за подводен анализ при гореспоменатите условия.
Keywords: биомеханика; стартове; плуване; завои; под вода
References: (click to open/close) | [1] Mooney R, Corley G, Godfrey A, Os-borough C, Quinlan LR, ÓLaighin G., 2015. Application of video-based methods for competitive swimming analysis: a systematic review. Sport Exerc Med Open J. 1, 5, 133-150. [2] Arellano, R., Ruiz-Navarro, J. J., Barbosa, T. M., López-Contreras, G., Morales-Ortíz, E., Gay, A., López-Belmonte, Ó., González-Ponce, Á. & Cuenca-Fernández, F., 2022. Are the 50 m Race Segments Changed From Heats to Finals at the 2021 European Swimming Championships? Frontiers in Physiology, 13, 1–24. https://doi.org/10.3389/fphys.2022.797367 [3] Vennell, R.; Pease, D.; Wilson, B., 2006. Wave drag on human swimmers. J. Biomech., 39, 664–671. [4] Veiga, S., Lorenzo, J.,Trinidad, A., Pla, R., Fallas-Campos, A., de la Rubia, A., 2022. Kinematic Analysis of the Underwater Undulatory Swimming Cycle: A Systematic and Synthetic Review. Int.J. Environ. Res. Public Health, 19, 12196. https://doi.org/10.3390/ijerph191912196. [5] Veiga, S.; Roig, A.; Gómez-Ruano, M.A., 2016. Do faster swimmers spend longer underwater than slower swimmers at World Championships? Eur. J. Sport Sci., 16, 919–926. [CrossRef] 5. Veiga, S., Roig, A. Effect of the starting and turning performances on the subsequent swimming parameters of elite swimmers. Sports Biomech. 2017, 16, 34–44. [6] Ruiz-Navarro, J. J., Cuenca-Fernández, F., Sanders, R. & Arellano, R., 2022. The determinant factors of undulatory underwater swimming performance: A systematic review. Journal of Sports Sciences, 40,11, 1243–1254. https://doi.org/10.1080/02640414.2022.2061259 [7] Higgs, A. J., Pease, D. L., Sanders, R. H., 2017. Relationships between kinematics and undulatory underwater swimming performance. Journal of Sports Sciences, 35,10, 995–1003. [8] Connaboy, C., Coleman, S., Moir, G., Sanders, R., 2010. Measures of reliability in the kinematics of maximal undulatory underwater swimming. Medicine and Science in Sports and Exercise, 42, 4, 762–770. https://doi.org/10.1249/MSS.0b013e3181badc68 [9]Von Loebbecke, A., Mittal, R., Mark, R., Hahn, J., 2009. A computational method for analysis of underwater dolphin kick hydrodynamics in human swimming. Sports Biomech. 2009, 8, 60–77. [10] Shimojo, H., Gonjo, T., Sakakibara, J., Sengoku, Y., Sanders, R. Takagi, H., 2019. A quasi three-dimensional visualization of unsteady wake flow in human undulatory swimming. J. Biomech., 93, 60–69. [11]Atkinson, R.R., Dickey, J.P., Dragunas, A., Nolte, V., 2014. Importance of sagittal kick symmetry for underwater dolphin kick performance, Hum. Mov. Sci., 33, 298–311. [12.] Matsuda, Y.; Kaneko, M.; Sakurai, Y.; Akashi, K.; Yasuo, S., 2021. Three-dimensional lower-limb kinematics during undulatory underwater swimming. Sports Biomech., 17, 1–15 [13] Arellano, R.; Pardillo, S.; Gavilán, A., 2002. Underwater undulatory swimming: Kinematic characteristics, vortex generation and application during the start, turn and swimming strokes. In Proceedings of the XXth International Symposium on Biomechanics in Sports; Universidad de Extremadura: Caceras, Spain, 29–41. [14] Ikeda, Y., Ichikawa, H., Shimojo, H., Nara, R., Baba, Y., Shimoyama, Y., 2021. Relationship between dolphin kick movement in humans and velocity during undulatory underwater swimming. J. Sports Sci., 39, 1497–1503. [15] Atkinson, R.R., Dickey, J.P., Dragunas, A., Nolte, V., 2014. Importance of sagittal kick symmetry for underwater dolphin kick performance. Hum. Mov. Sci., 33, 298–311. [16] Higgs, J., Pease, L., Sanders, H., 2017. Relationships between kinematics and undulatory underwater swimming performance. J. Sports Sci., 35, 995–1003 [17] Wadrzyk, L., Staszkiewicz, R., Zeglen, M., Kryst, L,2021. Relationship between somatic build and kinematic indices of underwater undulatory swimming performed by young male swimmers. Int. J. Perform. Anal. Sport., 21, 435–450. [18] Wadrzyk, L., Staszkiewicz, R., Kryst, L., Zeglen, M., 2019. Gender effect on underwater undulatory swimming technique of young competitive swimmers. Acta Bioeng. Biomech., 21, 3–11. [19] Yamakawa, K., Shimojo, H., Takagi, H., Sengoku, Y., 2022. Changes in kinematics and muscle activity with increasing velocity during underwater undulatory swimming. Front. Sports Act. Living, 15, 829618. [20] Dimitrova, B., 2013. Synchronized swimming – theoretical concept of the critical training zone. Sport Mont, XI (37-38-39), 41-47. [21] Shimojo, H., Sengoku, Y., Miyoshi, T., Tsubakimoto, S., Takagi, H., 2014. Effect of imposing changes in kick frequency on kinematics during undulatory underwater swimming at maximal effort in male swimmers. Hum. Mov. Sci., 38, 94–105. [22] Hochstein, S., Blickhan, R., 2014. Body movement distribution with respect to swimmer’s glide position in human underwater undulatory swimming. Hum. Mov. Sci., 38, 305–318. [23] Dimitrova, B., 2019. Artistichno pluvane v obrazovatelnata sistema. [In Bulgarian]. Sofiya, Izd. Avangard Prima: 78-80. ISBN: 978-619-239-149-2. [24] Hochstein, S., Blickhan, R. 2011. Vortex re-capturing and kinematics in human underwater undulatory swimming. Hum. Mov. Sci., 30, 998–1007. [25] Webb, P.W.; Kostecki, P.T.; Stevens, E.D. The effect of size and swimming speed on locomotor kinematics of rainbow trout. J. Exp. Biol. 1984, 109, 77–95.
|
|
| Date published: 2024-08-01
(Price of one pdf file: 39.00 BGN/20.00 EUR)