Реологични характеристики на кръвта, определящи нейната течливост и транспортен потенциал: Пътища за коригиране на нарушенията
А.В. Муравьов

, И.А. Тихомирова

, П.В. Михайлов

, А.В. Замишляев

Abstract: Цел: Вискозитетът на пълната кръв (WBV) се влияе от плазмения вискозитет (PV), хематокрита (Hct), агрегацията на еритроцитите (EA), деформируемостта на еритроцитите (DE) и напрежението на срязване. Материали и методи: В проучването участваха две групи доброволци: Група 1 (n=28) – здрави индивиди; Група 2 (n=30) – пациенти с артериална хипертония. Гореспоменатите реологични параметри бяха регистрирани и в двете групи. Резултати: При сравняване на двете групи, индивидите в Група 2 показаха 30% увеличение на WBV. Корелационният анализ показа, че всички основни реологични характеристики корелират значително с WBV. Това ни позволи да изведем линейни регресионни уравнения, в който всеки реологичен фактор е свързан с вискозитета на пълната кръв. Въз основа на тези уравнения беше внедрен изчислителен модел и беше определена оценената WBV за 10% положителна промяна във всеки от петте фактора. Установено е, че уравнението, свързващо WBV с DE, води до най-голямо намаление на вискозитета на кръвта (32%). 
Заключение: Прогнозираната промяна във WBV под влияние на други характеристики беше по-малка (от 6 до 12%). Може да се предположи, че деформацията на еритроцитите (DЕ) е важно звено в регулирането на течливостта на кръвта и нейните транспортни възможности. 
Keywords: вискозитет на кръвта; изчислителен модел; Hct; вискозитет на плазмата; деформируемост на еритроцитите
| References: (click to open/close) |  | | [1] Alexandrova, A., Antonova, N., Kyulavska, M., Velcheva, I., Ivanov, I., Zvetkova, E., 2018. Hemorheological and Atomic Force Microscopy studies on the experimental clot formations in patients with type 2 diabetes mellitus. Series on Biomechanics 32, 3, 63-73. [2] Sandhagen, B., 1999. Red cell fluidity in hypertension. Clin Hemorheol Microcirc 2,13-4, 179-181.
 [3] Mantskava, M., Momtselidze, N., Pargalava, D., 2022. Rheological status in (erythrocyte aggregation index, erythrocyte deformation index, plasma viscosity) in patients with Covid toes and with Raynauds phenomenon.  Series on Biomechanics 36, 1, 75-79. doi: 10.7546/SB.10.2022.
 [4] Stoltz, J. F., Donner, M., Muller, S., Larcan, A., 1991. Hemorheology in clinical practice. Introduction to the notion of hemorheologic profile. J Mal Vasc 6, 261-270.
 [5] Popel, A.S., Johnson, P. C., 2005. Microcirculation and Hemorheology. Annul. Rev. Fluid. Mech 37, 43-69. DOI: 10.1146/annurev.fluid.37.042604.133933.
 [6]  Varga, A., Matrai, A.A., Nemeth, N., 2025. The usefulness of red blood cell osmotic gradient deformability (osmoscan) measurements in surgical research: A single-center experience. Series on Biomechanics 39, 1, 3-8. doi: 10.7546/SB.01.01.2025.
 [7] Mohanty, J. G., Nagababu, E., Rifkind J. M., 2014. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol 5, 84. doi: 10.3389/fphys.2014.00084.
 [8] Brunati, M., Bordin, L., Clari, G., Moret, V., 1996. The Lyn-catalyzed Tyr phosphorylation of the transmembrane band 3 protein of human erythrocytes. Eur. J. Biochem 240, 394-399.
 [9] Minetti, G., Ciana, A., Balduini, C., 2004. Differential sorting of tyrosine kinases and phosphotyrosine phosphatases acting on band 3 during vesiculation of human erythrocytes. Biochem. J 377, 489-497.
 [10] Ferru, E., Giger, K., Pantaleo, A., Campanella E., Grey. J, Ritchie, K., Vono, R., Turrini, F., Low, P.S., 2011. Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3. Blood 117,22, 5998-6006. doi: 10.1182/blood-2010-11-317024.
 [11] Ehrly, M., 1991. Hémorhéologie, microcirculation et oxygénation. Aspects physiopathologiques et thérapeutiques [Hemorheology, microcirculation and oxygenation. Physiopathological and therapeutic aspects]. Rev Fr Gynecol Obstet 86(2 Pt 2), 131-138.
 [12] Jung, F., Pindur, G., Ohlmann, P., Spitzer, G., Sternitzky, R., Franke, R.P., Leithäuser, B., Wolf, S., Park, J.W., 2013. Microcirculation in hypertensive patients. Biorheology 50, 5-6, 241-255. doi: 10.3233/BIR-130645.
 [13] Förster, E., Renz, B., 1981. Methods of correlation and regression analysis. In Finance and Statistics 302 p.
 [14] Starzyk, D., Korbut, R., Gryglewski, R.J., 1999. Effects of nitric oxide and prostacycline on deformability and aggregability of red blood cells of rats ex vivo and in vitro. J. Physiol. Pharmacol 50, 629–637.
 [15] Uyuklu, M., Meiselman, H.J., Baskurt, O.K., 2009. Role of hemoglobin oxygenation in the modulation of red blood cell mechanical properties by nitric oxide. Nitric Oxide 21, 20-26. doi:10.1016/j.niox.2009.03.004.
 [16] Ugurel, E., Goksel, E., Cilek, N., Kaga, E., Yalcin, O., 2022. Proteomic Analysis of the Role of the Adenylyl Cyclase-cAMP Pathway in Red Blood Cell Mechanical Responses. Cells 11,7, 1250. doi: 10.3390/cells11071250.
 [17] Antonova, N., Volkova, E., Zamyshlyaev, A., Tikhomirova, I., Kolobanov, A., Gerasenkov, V., Muravyov, A., 2024. The contribution of red blood cell microrheological characteristics to impaired blood fluidity in peripheral arterial occlusive disease (PAOD) and their correction with gasotransmitters. Series on Biomechanics. 38, 2,3-10. doi:10.7546/SB.01.02.2024.
 [18] Foresto, P., D'Arrigo, M., Filippini, F., 2005. Hemorheological alterations in hypertensive patients. Medicina (B Aires). 65, 2, 121-125.
 [19] Guedes, A.F., Moreira, C., Nogueira, J.B., 2019. Fibrinogen–erythrocyte binding and hemorheology   measurements in the assessment of essential arterial hypertension patients. Nanoscale 11,6, 2757-66. doi: 10.1039/C8NR04398A.
 [20] Pries, A.R., Secomb, T.W., 2003. Rheology of the microcirculation. Clin Hemorheol Microcirc 29, 3-4,143-148.
 [21] Grau, M., Pauly, S., Ali, J., Walpurgis, K., Thevis, M., Bloch, W., Suhr, F., 2013. RBC-NOS- dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS One. 8, 2, :e56759. doi: 10.1371/journal.pone.0056759.
 [22] Cilek, N., Ugurel, E., Goksel, E., Yalcin, O., 2024. Signaling mechanisms in red blood cells: A view through    the protein phosphorylation and deformability. J Cell Physiol 239, 3, e30958. doi: 10.1002/jcp.30958.
 [23] Baskurt, O.K., Meiselman, H.J., 2003. Blood rheology and hemodynamics. Semin Thromb Hemost. 29, 5, 435-50. doi: 10.1055/s-2003-44551.
 [24] Fu, G.X., Ji, M., Han, L.Z., Xu, C.C., Pan, F.F., Hu, T.J., Zhong, Y., 2017. Erythrocyte rheological properties but not whole blood and plasma viscosity are associated with severity of hypertension in older people. Z Gerontol Geriatr. 50, 3, 233-238. doi:10.1007/s00391-016-1039-8.
 [25] Abbasian, M., Shams, M., Valizadeh, Z., Moshfegh, A., Javadzadegan, A., Cheng, S., 2020. Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patient- specific arterial models with in-vivo validation. Comput Methods Programs Biomed. 186, 105-185. doi: 10.1016/j.cmpb.2019.105185.
 [26] Kannojiya, V., Das, A.K., Das P.K., 2021. Simulation of Blood as Fluid: A Review From Rheological Aspects. IEEE Rev Biomed Eng 14, 327-341. doi: 10.1109/RBME.2020.3011182.
 [27] Wajihah, S.A., Sankar, D.S., 2023. A review on non-Newtonian fluid models for multi-layered blood rheology in constricted arteries. Arch Appl Mech 93, 5, 1771-1796. doi: 10.1007/s00419-023-02368-6.
 [28] Taichi, H., Shujiro, M., Keiji, S., 2019. In-vitro evaluation of blood fluidity using an electromagnetically spinning rheometry system. Jpn. J. Appl. Phys. 58 SGGA03 doi 10.7567/1347-4065/ab0ba4
 [29] Wilkinson, W.L., 1960. In Non-Newtonian fluids. Fluid Mechanics, Mixing and Heat Transfer. Pergamon Press. London, 138 pp.
 [30]  Angelkort, B., 1986. Blutrheologie bei peripherer Verschlusskankheit. Effekte von Hiimodilution und Pentoxiryllin fBlood rheology in peripheral occluSive disease. Effects of hemodilution and pentoxifolline]. Wien Med Wochenschr 136 Spec No, 29-35.
 [31] Oonishi, T., Sakashita, K., Uyesaka, N., 1997. Regulation of red blood cell filterability by Ca2+ influx and cAMP-mediated signaling pathways. Am J Physiol 273, 6, 1828-1834. doi: 10.1152/ajpcell.1997.273.6.C1828.
 [32] Muraryov, A.V., Tikhomirova, I.A., 2013. Role molecular signalling pathways in changes of red blood cell deformability. Clin Hemorheol Microcirc 53, l-2,45-59. doi: �32331CH- 2012-157 5.
 [33] Mozar, A., Connes, P., Collins, B., Hardy-Dessources, M.D., Romana, M., Lemonne, N., Bloch, W., Grau, M., 2016. Red blood cell nitric oxide synthase modulates red blood cell deformability in sickle cell anemia. Clin. Hemorheol. Microcirc 64, 47-53. dot. L0.3233/CH-162042.
 [34] Kobayashi, J., Ohtake, K., Murata, I., Sonoda, K., 2022. Nitric oxide bioavailability for red blood cell deformability in the microcirculation: A review of recent progress. Nitric Oxide 129, 25-29. doi: 10.1016/j.niox.2022.09.004
 
 | 
 | 
 | Date published: 2025-07-09
 (Price of one pdf file: 50.00 BGN/25.00 EUR)