Rheological characteristics of blood that determine its fluidity and transport potential: ways to correct disorders
A.V. Muravyov

, I.A. Tikhomirova

, P.V. Mikhailov

, A.V. Zamyshlyaev

Abstract: Objective: Whole blood viscosity (WBV) is affected by plasma viscosity (PV), hematocrit, red blood cell aggregation (RBCA), their deformability (RBCD) and shear stress. Materials and methods: Two groups of volunteers participated in the study: group 1 (n=28) – healthy individuals. Group 2 (n=30) – hypertensive patients. The above rheological parameters were recorded in individuals. Results: When comparing the two groups, an increase in WBV by 30% was found in individuals of group 2. Correlation analysis showed that all basic rheological characteristics significantly correlated with WBV. This made it possible to obtain linear regression equations, where each of the rheological factors was related to WBV. Based on these equations, a computational model was implemented and the calculated WBV was determined with a positive change of each of the five factors by 10%. It was found that the equation linking WBV with RBCD gave the largest decrease in WBV (by 32%).
Conclusion: The predicted change in WBV under the influence of other characteristics was smaller (from 6 to 12%). It can be assumed that the RBCD is an important link in the control of blood fluidity and its transport capabilities.
Series on Biomechanics, Vol.39, No.2 (2025), 54-62
DOI: 10.7546/SB.06.02.2025
Keywords: Blood viscosity; computational model; hematocrit (Нсt); plasma viscosity; red blood cell deformability
References: (click to open/close) | [1] Alexandrova, A., Antonova, N., Kyulavska, M., Velcheva, I., Ivanov, I., Zvetkova, E., 2018. Hemorheological and Atomic Force Microscopy studies on the experimental clot formations in patients with type 2 diabetes mellitus. Series on Biomechanics 32, 3, 63-73. [2] Sandhagen, B., 1999. Red cell fluidity in hypertension. Clin Hemorheol Microcirc 2,13-4, 179-181. [3] Mantskava, M., Momtselidze, N., Pargalava, D., 2022. Rheological status in (erythrocyte aggregation index, erythrocyte deformation index, plasma viscosity) in patients with Covid toes and with Raynauds phenomenon. Series on Biomechanics 36, 1, 75-79. doi: 10.7546/SB.10.2022. [4] Stoltz, J. F., Donner, M., Muller, S., Larcan, A., 1991. Hemorheology in clinical practice. Introduction to the notion of hemorheologic profile. J Mal Vasc 6, 261-270. [5] Popel, A.S., Johnson, P. C., 2005. Microcirculation and Hemorheology. Annul. Rev. Fluid. Mech 37, 43-69. DOI: 10.1146/annurev.fluid.37.042604.133933. [6] Varga, A., Matrai, A.A., Nemeth, N., 2025. The usefulness of red blood cell osmotic gradient deformability (osmoscan) measurements in surgical research: A single-center experience. Series on Biomechanics 39, 1, 3-8. doi: 10.7546/SB.01.01.2025. [7] Mohanty, J. G., Nagababu, E., Rifkind J. M., 2014. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol 5, 84. doi: 10.3389/fphys.2014.00084. [8] Brunati, M., Bordin, L., Clari, G., Moret, V., 1996. The Lyn-catalyzed Tyr phosphorylation of the transmembrane band 3 protein of human erythrocytes. Eur. J. Biochem 240, 394-399. [9] Minetti, G., Ciana, A., Balduini, C., 2004. Differential sorting of tyrosine kinases and phosphotyrosine phosphatases acting on band 3 during vesiculation of human erythrocytes. Biochem. J 377, 489-497. [10] Ferru, E., Giger, K., Pantaleo, A., Campanella E., Grey. J, Ritchie, K., Vono, R., Turrini, F., Low, P.S., 2011. Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3. Blood 117,22, 5998-6006. doi: 10.1182/blood-2010-11-317024. [11] Ehrly, M., 1991. Hémorhéologie, microcirculation et oxygénation. Aspects physiopathologiques et thérapeutiques [Hemorheology, microcirculation and oxygenation. Physiopathological and therapeutic aspects]. Rev Fr Gynecol Obstet 86(2 Pt 2), 131-138. [12] Jung, F., Pindur, G., Ohlmann, P., Spitzer, G., Sternitzky, R., Franke, R.P., Leithäuser, B., Wolf, S., Park, J.W., 2013. Microcirculation in hypertensive patients. Biorheology 50, 5-6, 241-255. doi: 10.3233/BIR-130645. [13] Förster, E., Renz, B., 1981. Methods of correlation and regression analysis. In Finance and Statistics 302 p. [14] Starzyk, D., Korbut, R., Gryglewski, R.J., 1999. Effects of nitric oxide and prostacycline on deformability and aggregability of red blood cells of rats ex vivo and in vitro. J. Physiol. Pharmacol 50, 629–637. [15] Uyuklu, M., Meiselman, H.J., Baskurt, O.K., 2009. Role of hemoglobin oxygenation in the modulation of red blood cell mechanical properties by nitric oxide. Nitric Oxide 21, 20-26. doi:10.1016/j.niox.2009.03.004. [16] Ugurel, E., Goksel, E., Cilek, N., Kaga, E., Yalcin, O., 2022. Proteomic Analysis of the Role of the Adenylyl Cyclase-cAMP Pathway in Red Blood Cell Mechanical Responses. Cells 11,7, 1250. doi: 10.3390/cells11071250. [17] Antonova, N., Volkova, E., Zamyshlyaev, A., Tikhomirova, I., Kolobanov, A., Gerasenkov, V., Muravyov, A., 2024. The contribution of red blood cell microrheological characteristics to impaired blood fluidity in peripheral arterial occlusive disease (PAOD) and their correction with gasotransmitters. Series on Biomechanics. 38, 2,3-10. doi:10.7546/SB.01.02.2024. [18] Foresto, P., D'Arrigo, M., Filippini, F., 2005. Hemorheological alterations in hypertensive patients. Medicina (B Aires). 65, 2, 121-125. [19] Guedes, A.F., Moreira, C., Nogueira, J.B., 2019. Fibrinogen–erythrocyte binding and hemorheology measurements in the assessment of essential arterial hypertension patients. Nanoscale 11,6, 2757-66. doi: 10.1039/C8NR04398A. [20] Pries, A.R., Secomb, T.W., 2003. Rheology of the microcirculation. Clin Hemorheol Microcirc 29, 3-4,143-148. [21] Grau, M., Pauly, S., Ali, J., Walpurgis, K., Thevis, M., Bloch, W., Suhr, F., 2013. RBC-NOS- dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS One. 8, 2, :e56759. doi: 10.1371/journal.pone.0056759. [22] Cilek, N., Ugurel, E., Goksel, E., Yalcin, O., 2024. Signaling mechanisms in red blood cells: A view through the protein phosphorylation and deformability. J Cell Physiol 239, 3, e30958. doi: 10.1002/jcp.30958. [23] Baskurt, O.K., Meiselman, H.J., 2003. Blood rheology and hemodynamics. Semin Thromb Hemost. 29, 5, 435-50. doi: 10.1055/s-2003-44551. [24] Fu, G.X., Ji, M., Han, L.Z., Xu, C.C., Pan, F.F., Hu, T.J., Zhong, Y., 2017. Erythrocyte rheological properties but not whole blood and plasma viscosity are associated with severity of hypertension in older people. Z Gerontol Geriatr. 50, 3, 233-238. doi:10.1007/s00391-016-1039-8. [25] Abbasian, M., Shams, M., Valizadeh, Z., Moshfegh, A., Javadzadegan, A., Cheng, S., 2020. Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patient- specific arterial models with in-vivo validation. Comput Methods Programs Biomed. 186, 105-185. doi: 10.1016/j.cmpb.2019.105185. [26] Kannojiya, V., Das, A.K., Das P.K., 2021. Simulation of Blood as Fluid: A Review From Rheological Aspects. IEEE Rev Biomed Eng 14, 327-341. doi: 10.1109/RBME.2020.3011182. [27] Wajihah, S.A., Sankar, D.S., 2023. A review on non-Newtonian fluid models for multi-layered blood rheology in constricted arteries. Arch Appl Mech 93, 5, 1771-1796. doi: 10.1007/s00419-023-02368-6. [28] Taichi, H., Shujiro, M., Keiji, S., 2019. In-vitro evaluation of blood fluidity using an electromagnetically spinning rheometry system. Jpn. J. Appl. Phys. 58 SGGA03 doi 10.7567/1347-4065/ab0ba4 [29] Wilkinson, W.L., 1960. In Non-Newtonian fluids. Fluid Mechanics, Mixing and Heat Transfer. Pergamon Press. London, 138 pp. [30] Angelkort, B., 1986. Blutrheologie bei peripherer Verschlusskankheit. Effekte von Hiimodilution und Pentoxiryllin fBlood rheology in peripheral occluSive disease. Effects of hemodilution and pentoxifolline]. Wien Med Wochenschr 136 Spec No, 29-35. [31] Oonishi, T., Sakashita, K., Uyesaka, N., 1997. Regulation of red blood cell filterability by Ca2+ influx and cAMP-mediated signaling pathways. Am J Physiol 273, 6, 1828-1834. doi: 10.1152/ajpcell.1997.273.6.C1828. [32] Muraryov, A.V., Tikhomirova, I.A., 2013. Role molecular signalling pathways in changes of red blood cell deformability. Clin Hemorheol Microcirc 53, l-2,45-59. doi: �32331CH- 2012-157 5. [33] Mozar, A., Connes, P., Collins, B., Hardy-Dessources, M.D., Romana, M., Lemonne, N., Bloch, W., Grau, M., 2016. Red blood cell nitric oxide synthase modulates red blood cell deformability in sickle cell anemia. Clin. Hemorheol. Microcirc 64, 47-53. dot. L0.3233/CH-162042. [34] Kobayashi, J., Ohtake, K., Murata, I., Sonoda, K., 2022. Nitric oxide bioavailability for red blood cell deformability in the microcirculation: A review of recent progress. Nitric Oxide 129, 25-29. doi: 10.1016/j.niox.2022.09.004
|
|
| Date published: 2025-07-09
(Price of one pdf file: 39.00 BGN/20.00 EUR)