Current trends in transcatheter aortic valve implantation modelling and simulation
N. Pil

, G. Selivanov, M. Seleznev, T. Pandelani

, O.Krestyaninov

, F. Nemavhola

, A. G. Kuchumov

Abstract: Transcatheter aortic implantation (TAVI) is an important minimally invasive procedure used to treat aortic stenosis, especially in high-risk patients. In recent years, there has been a significant increase in the number of TAVI procedures due to improved clinical outcomes and expanded indications for this technology in low- and intermediate-risk groups. Objective: This article provides an overview of current technologies and methods used to model and optimize transcatheter aortic valves. Materials and Methods: The most prominent and authoritative scientific databases were utilized, including PubMed, Scopus, Web of Science, and Google Scholar papers published between 2010 and 2025.Search queries included combinations of keywords such as «TAVI», «transcatheter aortic valve implantation», «aortic stenosis», «computational modeling of TAVI», «fluid-structure interaction» and «hemodynamics of TAVI». Results: We performed a systematic literature survey of peer-reviewed studies on numerical simulation of TAVI devices, focusing on Bernoulli–Euler beam approximations and Auricchio-Taylor model for shape memory stent, isotropic and anisotropic hyperelastic models of leaflet and skirt tissues–including Mooney–Rivlin, Ogden, and modified Holzapfel–Gasser–Ogden formulations and coupling strategies in fluid–structure interaction (FSI) frameworks. Key material parameters, modeling assumptions, and solver methodologies were extracted and compared. Discussion: This review provides a comprehensive analysis of the status and trends in TAVI, with an emphasis on the use of computer models and experimental studies to improve clinical outcomes. In addition, the future direction in personalized modeling using digital patient twins is discussed, allowing for accurate prediction of procedure outcomes and improved patient-specific valve selection.
Series on Biomechanics, Vol.39, No.2 (2025), 3-23
DOI: 10.7546/SB.01.02.2025
Keywords: Aortic valve; fluid-structure interaction; transcatheter aortic valve implantation
References: (click to open/close) | [1] Simonato, M., Webb, J., Kornowski, R., Vahanian, A., Fretker, C., Nissen, H., Bleiziffer, S., Duncan, A., Rodés-Cabau, J., Attizzani, G. F., Horlick, E., Latib, A., Bekeredjian, R., Barbanti, M., Lefevre, T., Cerillo, A., Hernández, J. M., Bruschi, G., Spargias, K., Iadanza, A., Brecker, S., Palma, J. H., Finkelstein, A., Abdel-Wahab, M., Lemos, P., Petronio, A. S., Champagnac, D., Sinning, J.-M., Salizzoni, S., Napodano, M., Fiorina, C., Marzocchi, A., Leon, M., Dvir, D., 2016. Transcatheter replacement of failed bioprosthetic valves: Large multicenter assessment of the effect of implantation depth on hemodynamics after aortic valve-in-valve. Circulation: Cardiovascular Interventions 9, e003651. [2] Martin, S. S., Aday, A. W., Almarzooq, Z. I., Beaton, A. Z., Bittencourt, M. S., Boehme, A. K., Elkind, M. S. V., Evenson, K. R., Ferguson, J. F., Gupta, D. K., Khan, S. S., Kissela, B. M., Knutson, K. L., Lee, C. D., Lewis, T. T., Liu, J., Loop, M. S., Ma, J., Mussolino, M. E., Navaneethan, S. D., Perak, A. M., Roth, G. A., Samad, Z., Satou, G. M., Schroeder, E. B., Shah, S. H., Thacker, E. L., Virani, S. S., Voeks, J. H., Wang, N. Y., Yaffe, K., Martin, L. W., 2025. 2025. Heart disease and stroke statistics: a report of US and global data From the American Heart Association. Circulation 151, 41-660. [3] Head, S. J., Çelik, M., Kappetein, A. P., 2017. Mechanical versus bioprosthetic aortic valve replacement. European Heart Journal 386, 2183-2191. [4] Chiang, Y. P., Chikwe, J., Moskowitz, A. J., Itagaki, S., Adams, D. H., Egorova, N. N., 2014. Survival and long-term outcomes following bioprosthetic vs mechanical aortic valve replacement in patients aged 50 to 69 years. JAMA - Journal of the American Medical Association 312, 1323-1329. [5] Lindman, B. R., Clavel, M. A., Mathieu, P., Iung, B., Lancellotti, P., Otto, C. M., Pibarot, P., 2016. Calcific aortic stenosis. Nature Reviews Disease Primers 2, 1-28. [6] Loureiro-Ga, M., Veiga, C., Fdez-Manin, G., Jimenez, V. A., Calvo-Iglesias, F., Iñiguez, A., 2020. A biomechanical model of the pathological aortic valve: simulation of aortic stenosis. Computer Methods in Biomechanics and Biomedical Engineering 23, 303-311. [7] Towler, D. A., 2013. Molecular and cellular aspects of calcific aortic valve disease. Circ Res 113, 198-208. [8] Wei, L., Chen, X., Tang Y., Wang, B., Dong L., Bramlage P.,Wang Y., 2024. Transcatheter aortic valve replacement in China - a review of the available evidence. AsiaIntervention 10, 14-21. [9] Bleiziffer, S., Appleby, C., Delgado, V., Eltchaninoff, H., Gebhard, C., Hengstenberg, C., Wojakowski, W., Petersen, N., Kurucova, J., Bramlage, P., Rudolph, T. K., 2024. Patterns of aortic valve replacement in Europe and adoption by sex. International Journal of Cardiology 406, 131996. [10] Vahl, T. P., Thourani, V. H., Makkar, R. R., Hamid, N., Khalique, O. K., Daniels, D., McCabe, J. M., Satler, L., Russo, M., Cheng, W., George, I., Aldea, G., Sheridan, B., Kerciakes, D., Golwala, H., Zahr, F., Chetcuti, S., Yadav, P., Kodali, S. K., Treede, H., Baldus, S., Amoroso, N., Ranard, L. S., Pinto, D. S., Leon, M. B., 2024. Transcatheter aortic valve implantation in patients with high-risk symptomatic native aortic regurgitation (ALIGN-AR): a prospective, multicentre, single-arm study. The Lancet 403, 1451-1459. [11] Vasileios, C., Ilias, K., George, F., Eutyxia, S., Euaggelos, L., Antonios, M., Athanasios, P., Ioannis, M., Athanasios, S., Anna, K., Letsas, K., Georgiadou, P., Vasileios, V., Efremidis, M., Ioannis, I., 2024. Vascular complications in TAVI procedures: assessment, management, and outcomes–a retrospective study. Hellenic Journal of Cardiology 6, 1-13. [12] Pil, N., Kuchumov, A. G., Kadyraliev, B., Arutunyan, V., 2023. Influence of aortic valve leaflet material model on hemodynamic features in healthy and pathological states. Mathematics 11, 428. [13] Brankovic, M., Sharma, A., 2025. Transcatheter aortic valve implantation and replacement: the latest advances and prospects. Journal of Clinical Medicine 14, 1844. [14] Zou, Q., Wei, Z., Sun, S., 2024. Complications in transcatheter aortic valve replacement: A comprehensive analysis and management strategies. Current Problems in Cardiology 49, 102478. [15] Pan, X. G., Corpuz, A. M., Rajanna, M. R., Johnson, E. L., 2024. Parameterization, algorithmic modeling, and fluid-structure interaction analysis for generative design of transcatheter aortic valves. Engineering with Computers 40, 3405- 3427. [16] Brown, J. A., Lee, J. H., Smith, M. A., Wells, D. R., Barrett, A., Puelz, C., Vavalle, J. P., Griffith, B. E., 2023. Patient-specific immersed finite element-difference model of transcatheter aortic valve replacement. Annals of Biomedical Engineering 51, 103-116. [17] Mutlu, O., Saribay, M., Yavuz, M. M., Salman, H. E., Al-Nabti, A. R. D. M. H., Yalcin, H. C., 2024. Material modeling and recent findings in transcatheter aortic valve implantation simulations. Computer Methods and Programs in Biomedicine 255. 108314 [18] Hatoum, H., Ahn, S., Lilly, S., Maureira, P., Crestanello, J., Thourani, V. H., Dasi, L. P., 2022. Flow dynamics of surgical and transcatheter aortic valves: Past to present. JTCVS Open 9, 43-56. [19] Luraghi, G., Migliavacca, F., García-González, A., Chiastra, C., Rossi, A., Cao, D., Stefanini, G., Rodriguez Matas, J. F., 2019. On the modeling of patient-specific transcatheter aortic valve replacement: a fluid-structure interaction approach. Annals of Biomedical Engineering 10, 437-455. [20] Hatoum, H., Yousefi, A., Lilly, S., Maureira, P., Crestanello, J., Dasi, L. P., 2018. An in vitro evaluation of turbulence after transcatheter aortic valve implantation. The Journal of Thoracic and Cardiovascular Surgery 156, 1837-1848. [21] Barakat, M., Dvir, D., Azadani, A. N., 2018. Fluid dynamic characterization of transcatheter aortic valves using particle image velocimetry. Artificial Organs 42, 357-368. [22] Zakikhani, P., Ho, R., Wang, W., Li, Z., 2019. Biomechanical assessment of aortic valve stenosis: advantages and limitations. Medicine in Novel Technology and Devices 2, 100009. [23] Nappi, F., Avtaar Singh, S. S., Nappi, P., Fiore, A., 2022. Biomechanics of Transcatheter Aortic Valve Implant. Bioengineering 9, 299. [24] Hatoum, H., Singh-Gryzbon, S., Esmailie, F., Ruile, P., Neumann, F. J., Blanke, P., Thourani, V. H., Yoganathan, A. P., Dasi, L. P., 2021. Predictive model for thrombus formation after transcatheter valve replacement. Cardiovascular Engineering and Technology 12, 576-588. [25] Zhao, X., Eren, O. C., Molyneux, A., Geekie, L., Curzen, N., Bressloff, N. W., 2025. Development of a methodology for in vitro and in silico simulation of transcatheter aortic valve replacement using 3D-printed valve frames. Computers in Biology and Medicine 186, 109690. [26] Mutlu, O., Mazhar, N., Saribay, M., Yavuz, M. M., Ozturk, D., Ghareeb, A. N., Alnabti, A., Yalcin, H. C., 2025. Finite element analysis of Evolut transcatheter heart valves: effects of aortic geometries and valve sizes on post-TAVI wall stresses and deformations. Journal of Clinical Medicine 14, 850. [27] Shen, X., Xu, Y., Li, H., Wang, L., Sun, P., Liu, Q., Chen, J., He, Z., 2024. Mechanical behaviors of a new elliptical valve stent in bicuspid aortic valve. Computer Methods and Programs in Biomedicine 250, 108173. [28] Qiu, D., Barakat, M., Hopkins, B., Ravaghi, S., Azadani, A. N., 2021. Transcatheter aortic valve replacement in bicuspid valves: The synergistic effects of eccentric and incomplete stent deployment. Journal of the Mechanical Behavior of Biomedical Materials 121, 104621. [29] Kuchumov, A. G., Khairulin, A. R., Bivanov, A. N., Porodikov, A. A., Arutyunyan, V. B., Sinelnikov, Y. S., 2020. Effectiveness of Blalock-Taussig shunt performance in the congenital heart disease children. Russian Journal of Biomechanics 24, 65-83. [30] Kuchumov, A. G., Kamalidinov, M. R., Samartsev, V. A., Khairulin, A. R., Ivashova, Y. A., Taiar, R., 2020. Patient specific simulation of a gallbladder refilling based on MRI and ultrasound in vivo measurements. AIP Conference Proceedings 2216, 060004. [31] Luraghi, G., Rodriguez Matas, J. F., Beretta, M., Chiozzi, N., Iannetti, L., Migliavacca, F., 2021. The impact of calcification patterns in transcatheter aortic valve performance: a fluid-structure interaction analysis. Computer Methods in Biomechanics and Biomedical Engineering 24, 375-383. [32] Baylous, K., Kovarovic, B., Paz, R. R., Anam, S., Helbock, R., Horner, M., Slepian, M., Bluestein, D., 2024. Thrombogenic risk assessment of transcatheter prosthetic heart valves using a fluid-structure interaction approach. Computer Methods and Programs in Biomedicine 257, 108469. [33] Tango, A. M., Monteleone, A., Ducci, A., Burriesci, G., 2025. Analysis of the haemodynamic changes caused by surgical and transcatheter aortic valve replacements by means fluid-structure interaction simulations. Computers in Biology and Medicine 186, 109673. [34] Wu, M. C. H., Zakerzadeh, R., Kamensky, D., Kiendl, J., Sacks, M. S., Hsu, M. C., 2018. An anisotropic constitutive model for immersogeometric fluid-structure interaction analysis of bioprosthetic heart valves. Journal of Biomechanics 74, 23-31. [35] Kamaltdinov, M. R., Kuchumov, A. G., 2021. Application of a mathematical model of systemic circulation for determination of blood flow parameters after modified Blalock-Taussig shunt operation in newborns. Russian Journal of Biomechanics 25, 322-334. [36] Kuchumov, A., Tuktamyshev, V., Kamaltdinov, M., 2017. Peristaltic flow of lithogenic bile in the Vateri's papilla as non-Newtonian fluid in the finite-length tube: analytical and numerical results for reflux study and optimization. Medical Engineering and Physics 47, 35-42. [37] Kuchumov, A. G., Makashova, A., Vladimirov, S., Borodin, V., Dokuchaeva, A., 2023. Fluid-structure interaction aortic valve surgery simulation: a review. Fluids 8, 295. [38] Kapoor, A. B., Jepson, N., Bressloff, N. W., Loh, P. H., Ray, T., Beier, S., 2024. The road to the ideal stent: A review of stent design optimisation methods, findings, and opportunities. Materials & Design 237, 112556. [39] Barati, S., Fatouraee, N., Nabaei, M., Petrini, L., Migliavacca, F., Luraghi, G., Rodriguez Matas, J. F., 2022. Patient-specific multi-scale design optimization of transcatheter aortic valve stents. Computer Methods and Programs in Biomedicine 221, 106912. [40] Wang, Y., Fu, Y., Wang, Q., Kong, D., Wang, Z., Liu, J., 2024. Recent advancements in polymeric heart valves: From basic research to clinical trials. Materials Today Bio 28, 101194. [41] Liu, X., Zhang, W., Ye, P., Luo, Q., Chang, Z., 2022. Fluid-Structure Interaction Analysis on the Influence of the Aortic Valve Stent Leaflet Structure in Hemodynamics. Frontiers in Physiology 13, 1-12. [42] Wu, M. C. H., Muchowski, H. M., Johnson, E. L., Rajanna, M. R., Hsu, M. C., 2019. Immersogeometric fluid-structure interaction modeling and simulation of transcatheter aortic valve replacement. Computer Methods in Applied Mechanics and Engineering 357, 112556. [43] Bahadormanesh, N., Tomka, B., Abdelkhalek, M., Khodaei, S., Maftoon, N., Keshavarz-Motamed, Z., 2023. A Doppler-exclusive non-invasive computational diagnostic framework for personalized transcatheter aortic valve replacement. Scientific Reports 13, 8033. [44] Farokhi, E. A., Niroomand-Oscuii, H., Yazdanpanah, K., 2021. Investigation the effect of geometry and position of polymeric heart valves on hemodynamic with fluid-structure interaction numerical method. Medical Engineering & Physics 97, 10-17. [45] McGee, O. M., Gunning, P. S., McNamara, A., McNamara, L. M., 2019. The impact of implantation depth of the Lotus™ valve on mechanical stress in close proximity to the bundle of His. Biomechanics and Modeling in Mechanobiology 18, 79-88. [46] Ghosh, R. P., Marom, G., Bianchi, M., D’souza, K., Zietak, W., Bluestein, D., 2020. Numerical evaluation of transcatheter aortic valve performance during heart beating and its post-deployment fluid-structure interaction analysis. Biomechanics and Modeling in Mechanobiology 19, 1725-1740. [47] de Jaegere, P., de Ronde, M., den Heijer, P., Weger, A., Baan, J., 2020. The history of transcatheter aortic valve implantation: The role and contribution of an early believer and adopter, the Netherlands. Netherlands Heart Journal 28, 128-135. [48] Andersen, H. R., 2021. How Transcatheter Aortic Valve Implantation (TAVI) Was Born: The Struggle for a New Invention. Frontiers in Cardiovascular Medicine 8, 722693. [49] Dwyer, H., Matthews, P. B., Azadani, A., Jaussaud, N., Ge, L., Guy, T. S., Tseng, E. E., 2009. Computational fluid dynamics simulation of transcatheter aortic valve degeneration. Interactive Cardiovascular and Thoracic Surgery 9, 301-308. [50] Corcione, N., Berni, A., Ferraro, P., Morello, A., Cimmino, M., Albanese, M., Nestola, L., Bardi, L., Pepe, M., Giordano, S., Biondi-Zoccai, G., Rigattieri, S., Giovannelli, F., Giordano, A., 2022. Transcatheter aortic valve implantation with the novel-generation Navitor device: Procedural and early outcomes. Catheterization and Cardiovascular Interventions 100, 114-119. [51] Sirois, E., Wang, Q., Sun, W., 2011. Fluid simulation of a transcatheter aortic valve deployment into a patient-specific aortic root. Cardiovascular Engineering and Technology 2, 186-195. [52] Baylous, K., Helbock, R., Kovarovic, B., Anam, S., Slepian, M., Bluestein, D., 2024. In silico fatigue optimization of TAVR stent designs with physiological motion in a beating heart model. Computer Methods and Programs in Biomedicine 243, 107886. [53] Caballero, A., Mao, W., McKay, R., Sun, W., 2020. The Impact of Self-Expandable Transcatheter Aortic Valve Replacement on Concomitant Functional Mitral Regurgitation: A Comprehensive Engineering Analysis. Structural Heart 4, 179-191. [54] Grossi, B., Rossi, A., Bianchi, M., Ferrari, G., De Luca, L., Colombo, A., Salvetti, G., Rizzo, S., Berti, S., Bruschi, G., 2025. The impact of bicuspid valve morphology on the selection of transcatheter aortic valve implantation devices: an in silico study. European Heart Journal - Imaging Methods and Practice 3, 1-12. [55] Ramella, A., Bertoldo, A., Giordano, C., Comino, F., Bellofiore, K., Peruzzo, P., Spadaccio, C., Rainer, A., Faggian, G., 2024. On the necessity to include arterial pre-stress in patient-specific simulations of minimally invasive procedures. Biomechanics and Modeling in Mechanobiology 23, 525-537. [56] Valvo, R., Costa, G., Tamburino, C., Barbanti, M., 2021. Coronary artery cannulation after transcatheter aortic valve implantation. EuroIntervention 17, 835-847. [57] Weferling, M., Hamm, C., Kim, W., 2021. Percutaneous Coronary Intervention in Transcatheter Aortic Valve Implantation Patients: Overview and Practical Management. Frontiers in Cardiovascular Medicine 8, 653768. [58] Hatoum, H., Lilly, S., Maureira, P., Crestanello, J., Dasi, L.P., 2021. The hemodynamics of transcatheter aortic valves in transcatheter aortic valves. Journal of Thoracic and Cardiovascular Surgery 161, 565-576.e2. [59] Vogl, B., El Shaer, A., Crestanello, J., Alkhouli, M., Hatoum, H., 2022. Flow dynamics in the sinus and downstream of third and fourth generation balloon expandable transcatheter aortic valves. Journal of the Mechanical Behavior of Biomedical Materials 127, 105092. [60] Samaee, M., Hatoum, H., Biersmith, M., Yeats, B., Gooden, S., Thourani, V., Hahn, R., Lilly, S., Yoganathan, A., Dasi, L., 2022. Gradient and pressure recovery of a self-expandable transcatheter aortic valve depends on ascending aorta size: In vitro study. JTCVS Open 9, 28-38. [61] Hatoum, H., Samaee, M., Sathananthan, J., Sellers, S., Kuetting, M., Lilly, S., Indayhid, A., Blanke, P., Leipsic, J., Thourani, V., Dasi, L., 2022. Comparison of performance of self-expanding and balloon-expandable transcatheter aortic valves. JTCVS Open 10, 128-139. [62] Rahmani, B., Tzamtzis, S., Sheridan, R., Mullen, M., Yap, J., Seifalian, A., Burriesci, G., 2017. In Vitro Hydrodynamic Assessment of a New Transcatheter Heart Valve Concept (the TRISKELE). Journal of Cardiovascular Translational Research 10, 104-115. [63] Leone, P., Scotti, A., Ho, E., Assafin, M., Doolittle, J., Chau, M., Slipczuk, L., Levitus, M., Regazzoli, D., Mangieri, A., Latib, A., 2023. Prosthesis Tailoring for Patients Undergoing Transcatheter Aortic Valve Implantation. Journal of Clinical Medicine 12, 338. [64] Möllmann, H., Holzhey, D.M., Hilker, M., Toggweiler, S., Schäfer, U., Treede, H., Joner, M., Søndergaard, L., Christen, T., Allocco, D.J., Kim, W.-K., 2021. The ACURATE neo2 valve system for transcatheter aortic valve implantation: 30-day and 1-year outcomes. Clinical Research in Cardiology 110, 1912–1920. [65] Tamburino, C., Bleiziffer, S., Thiele, H., Scholtz, S., Hildick-Smith, D., Cunnington, M., Wolf, A., Barbanti, M., Tchétché, D., Garot, P., Pagnotta, P., Gilard, M., Bedogni, F., Van Belle, E., Vasa-Nicotera, M., Chieffo, A., Deutsch, O., Kempfert, J., Søndergaard, L., Butter, C., Trillo-Nouche, R., Lotfi, S., Möllmann, H., Joner, M., Abdel-Wahab, M., Bogaerts, K., Hengstenberg, C., Capodanno, D., 2020. Comparison of Self-Expanding Bioprostheses for Transcatheter Aortic Valve Replacement in Patients with Symptomatic Severe Aortic Stenosis: SCOPE 2 Randomized Clinical Trial. Circulation 142, 2431-2442. [66] Lanz, J., Kim, W.-K., Walther, T., Burgdorf, C., Möllmann, H., Linke, A., Redwood, S., Thilo, C., Hilker, M., Joner, M., Thiele, H., Conzelmann, L., Conradi, L., Kerber, S., Schymik, G., Prendergast, B., Husser, O., Stortecky, S., Heg, D., Jüni, P., Pilgrim, T., 2019. Safety and efficacy of a self-expanding versus a balloon-expandable bioprosthesis for transcatheter aortic valve replacement in patients with symptomatic severe aortic stenosis: a randomised non-inferiority trial. The Lancet 394, 1619-1628. [67] Harhash, A., Ansari, J., Mandel, L., Kipperman, R., 2016. STEMI after TAVR: procedural challenge and catastrophic outcome. JACC: Cardiovascular Interventions 9, 1412-1413. [68] Sathananthan, J., Fraser, R., Kütting, M., Hensey, M., Landes, U., Alkhodair, A., Sedaghat, A., Blanke, P., Toggweiler, S., Leipsic, J., Søndergaard, L., Wood, D., Webb, J.G., 2020. Impact of implant depth on hydrodynamic function of the ALLEGRA bioprosthesis in valve-in-valve interventions. EuroIntervention 15, 1335-1342. [69] Sathananthan, J., Sellers, S., Fraser, R., Dvir, D., Hensey, M., Murdoch, D., Blanke, P., Pibarot, P., Toggweiler, S., Wood, D., Leipsic, J., Webb, J., 2019. Impact of implant depth on hydrodynamic function with the ACURATE neo transcatheter heart valve following valve-in-valve transcatheter aortic valve replacement in Mitroflow bioprosthetic valves: An ex vivo bench study. EuroIntervention 15, 78-87. [70] Akodad, M., Kütting, M., Sellers, S., Kirsten, A., Marx, P., Kim, I., Cheung, A., Leipsic, J., Søndergaard, L., Toggweiler, S., Wood, D., Webb, J., Sathananthan, J., 2022. Redo Transcatheter Aortic Valve Implantation with the ALLEGRA Transcatheter Heart Valve: Insights from Bench Testing. Cardiovascular Engineering and Technology 13, 930-938. [71] Crugnola, L., Vergara, C., Fusini, L., Fumagalli, I., Luraghi, G., Redaelli, A., Pontone, G., 2025. Computational hemodynamic indices to identify Transcatheter Aortic Valve Implantation degeneration. Computer Methods and Programs in Biomedicine 259, 108517. [72] Meier, D., Akodad, M., Landes, U., Barlow, A., Chatfield, A., Lai, A., Tzimas, G., Tang, G., Puehler, T., Lutter, G., Leipsic, J., Søndergaard, L., Wood, D., Webb, J., Sellers, S., Sathananthan, J., 2022. Coronary Access Following Redo TAVR: Impact of THV Design, Implant Technique, and Cell Misalignment. JACC: Cardiovascular Interventions 15, 1519-1531. [73] Yudi, M., Sharma, S., Tang, G., Kini, A., 2018. Coronary angiography and percutaneous coronary intervention after transcatheter aortic valve replacement. Journal of the American College of Cardiology 71, 1360-1378. [74] Barbanti, M., Buccheri, S., Rodés-Cabau, J., Gulino, S., Généreux, P., Pilato, G., Dvir, D., Picci, A., Costa, G., Tamburino, C., Leon, M., Webb, J., 2017. Transcatheter aortic valve replacement with new-generation devices: A systematic review and meta-analysis. International Journal of Cardiology 245, 83-89. [75] Blumenstein, J., Kim, W.-K., Liebetrau, C., Gaede, L., Kempfert, J., Walther, T., Hamm, C., Möllmann, H., 2015. Challenges of coronary angiography and intervention in patients previously treated by TAVI. Clinical Research in Cardiology 104, 632-639. [76] Zivelonghi, C., Pesarini, G., Scarsini, R., Lunardi, M., Piccoli, A., Ferrero, V., Gottin, L., Vassanelli, C., Ribichini, F., 2017. Coronary catheterization and percutaneous interventions after transcatheter aortic valve implantation. American Journal of Cardiology 120, 625-631. [77] Ferreira-Neto, A., Puri, R., Asmarats, L., Vilalta, V., Guimaraes, L., Delarochellière, R., Paradis, J.-M., Mohammadi, S., Dumont, E., Rodés-Cabau, J., 2019. Clinical and technical characteristics of coronary angiography and percutaneous coronary interventions performed before and after transcatheter aortic valve replacement with a balloon-expandable valve. Journal of Interventional Cardiology 2019, 3579671. [78] Sharma, S., Rao, R., Chopra, M., Sonawane, A., Jose, J., Sengottuvelu, G., 2021. Myval Transcatheter Heart Valve System in the treatment of severe symptomatic aortic stenosis. Future Cardiology 17, 73-80. [79] Zaid, S., Atkins, M., Kleiman, N., Reardon, M., Tang, G., 2023. What's new with TAVR? An update on device technology. Methodist DeBakey Cardiovascular Journal 19, 3, 4-14. [80] Appa, H., Park, K., Bezuidenhout, D., van Breda, B., de Jongh, B., de Villiers, J., Chacko, R., Scherman, J., Ofoegbu, C., Swanevelder, J., Cousins, M., Human, P., Smith, R., Vogt, F., Podesser, B., Schmitz, C., Conradi, L., Treede, H., Schröfel, H., Fischlein, T., Grabenwöger, M., Luo, X., Coombes, H., Matskeplishvili, S., Williams, D., Zilla, P., 2022. The technological basis of a balloon-expandable TAVR system: Non-occlusive deployment, anchorage in the absence of calcification and polymer leaflets. Frontiers in Cardiovascular Medicine 9, 791949. [81] Vahl, T., Thourani, V., Makkar, R., Hamid, N., Khalique, O., Daniels, D., McCabe, J., Sattler, L., Russo, M., Cheng, W., George, I., Aldea, G., Sheridan, B., Kerejakes, D., Golwala, H., Zahr, F., Chetcuti, S., Yadav, P., Kodali, S., Treede, H., Leon, M., 2024. Transcatheter aortic valve implantation in patients with high-risk symptomatic native aortic regurgitation (ALIGN-AR): a prospective, multicentre, single-arm study. The Lancet 403, 1451-1459. [82] Terkelsen, C., Freeman, P., Dahl, J., Thim, T., Nørgaard, B., Mogensen, N., Tang, M., Eftekhari, A., Povlsen, J., Poulsen, S., Pedersen, L., Hjort, J., Ellert, J., Christiansen, E., Sørensen, H., Nissen, H., 2025. SAPIEN 3 versus Myval transcatheter heart valves for transcatheter aortic valve implantation (COMPARE-TAVI 1): a multicentre, randomised, non-inferiority trial. The Lancet 405, 1362-1372. [83] Elkoumy, A., Jose, J., Gunasekaran, S., Kumar, A., Srinivas, B., Manjunath, C., Ravindranath, K., Parekh, M., Chandra, P., Kapoor, R., Abdelshafy, M., Seth, A., Agrawal, P., Mathur, A., Rao, R., Elzomor, H., Sadanada, K., Kumar, V., Arsang-Jang, S., Mehrotra, S., Soliman, O., 2023. Angiographic quantification of aortic regurgitation following Myval Octacor implantation; independent core lab adjudication. International Journal of Cardiology 382, 68-75. [84] Kilic, T., Coskun, S., Mirzamidinov, D., Yilmaz, I., Yavuz, S., Sahin, T., 2024. Myval Transcatheter Heart Valve: The future of transcatheter valve replacement and significance in current timeline. Journal of Clinical Medicine 13(22), 6857. [85] Kereiakes, D., Answini, G., Yakubov, S., Rai, B., Smith, J., Duff, S., Shannon, F., Sakwa, M., Beith, J., Heimansohn, D., 2021. Preliminary evaluation of a novel polymeric valve following surgical implantation for symptomatic aortic valve disease. JACC: Cardiovascular Interventions 14, 2754-2756. [86] Singh, S., Kachel, M., Castillero, E., Xue, Y., Kalfa, D., Ferrari, G., George, I., 2023. Polymeric prosthetic heart valves: A review of current technologies and future directions. Frontiers in Cardiovascular Medicine 10, 1137827. [87] Jenney, C., Millson, P., Grainger, D., Grubbs, R., Gunatillake, P., McCarthy, S., Runt, J., Belth, J., 2021. Assessment of a siloxane poly(urethane-urea) elastomer designed for implantable heart valve leaflets. Advanced Nanobiomed Research 1, 2000032. [88] Ge, J., Zhou, D., Zhang, X., Hou, S., Chen, S., Jin, Q., Pan, W., Li, W., Pan, C., Qian, J., 2023. Preliminary implantation of a novel TAVR device with polymeric leaflets for symptomatic calcific aortic disease. JACC: Case Reports 17, 101901. [89] Rahmani, B., Tzamtzis, S., Sheridan, R., Mullen, M., Yap, J., Seifalian, A., Burriesci, G., 2016. A new transcatheter heart valve concept (the TRISKELE): feasibility in an acute preclinical model. EuroIntervention 12, 901-908. [90] Rahmani, B., Tzamtzis, S., Sheridan, R., Mullen, M., Yap, J., Seifalian, A., Burriesci, G., 2017. In vitro hydrodynamic assessment of a new transcatheter heart valve concept (the TRISKELE). Journal of Cardiovascular Translational Research 10, 104-115. [91] Rotman, O., Kovarovic, B., Chiu, W., Bianchi, M., Marom, G., Slepian, M., Bluestein, D., 2019. Novel polymeric valve for transcatheter aortic valve replacement applications: In vitro hemodynamic study. Annals of Biomedical Engineering 47, 113-125. [92] Tango, A., Salmonsmith, J., Ducci, A., Burriesci, G., 2018. Validation and extension of a fluid-structure interaction model of the healthy aortic valve. Cardiovascular Engineering and Technology 9, 739-751 [93] Zhao, X., Liang, A., Bellin, M., Bressloff, N., 2024. Effects of process parameters and geometry on dimensional accuracy and surface quality of thin strut heart valve frames manufactured by laser powder bed fusion. International Journal of Advanced Manufacturing Technology 133, 543-557. [94] Eren, O., Bressloff, N., 2024. Leaflet stresses during crimping simulations of a CoreValve Evolut Pro model using a compression loading system. Biomedical Engineering Advances 8, 100130. [95] Grossi, B., Barati, S., Ramella, A., Migliavacca, F., Rodriguez Matas, J., Dubini, G., Chakfe, N., Heim, F., Cozzi, O., Condorelli, G., Stefanini, G., Luraghi, G., 2024. Validation evidence with experimental and clinical data to establish credibility of TAVI patient-specific simulations. Computers in Biology and Medicine 182, 109159. [96] Kuchumov, A., Nyashin, Y., Samartsev, V., 2015. Modelling of peristaltic bile flow in the papilla ampoule with stone and in the papillary stenosis case: Application to reflux investigation. In: 7th WACBE World Congress on Bioengineering 2015, 158-161. [97] Kuchumov, A., Selyaninov, A., 2019. Application of computational fluid dynamics in biofluids simulation to solve actual surgery tasks. In: Human Interaction and Emerging Technologies, 576-580. [98] Kuchumov, A., 2018. Biomechanical modelling of bile flow in the biliary system. MATEC Web of Conferences 145, 04004. [99] Kuchumov, A., 2016. Mathematical modelling of the peristaltic lithogenic bile flow through the duct at papillary stenosis as a tapered finite-length tube. Russian Journal of Biomechanics 20, 77-96. [100] Kuchumov, A., Kamaltdinov, M., Selyaninov, A., Samartsev, V., 2019. Numerical simulation of biliary stent clogging. Series on Biomechanics 33, 3-15. [101] Bressloff, N., 2022. Leaflet stresses during full device simulation of crimping to 6 mm in transcatheter aortic valve implantation, TAVI. Cardiovascular Engineering and Technology 13, 735-750. [102] Meng, Z., Zhang, H., Cai, Y., Gao, Y., Liang, C., Wang, J., Chen, X., Guo, L., Wang, S., 2024. Computational study of transcatheter aortic valve replacement based on patient-specific models—rapid surgical planning for self-expanding valves (Updated). Frontiers in Physiology 15, 1407215. [103] De Vita, F., de Tullio, M., Verzicco, R., 2016. Numerical simulation of the non-Newtonian blood flow through a mechanical aortic valve. Theoretical and Computational Fluid Dynamics 30, 129-138. [104] Abbas, S., Nasif, M., Meor Said, M., Al-Waked, R., 2018. Numerical simulation of the non-Newtonian blood flow through aortic bileaflet mechanical heart valve using fluid-structure interaction approach. AIP Conference Proceedings 2035, 070003.
|
|
| Date published: 2025-07-09
(Price of one pdf file: 39.00 BGN/20.00 EUR)