An application of the method of simplest equation for real solutions for advection-diffusion interaction
R. Nikolov, I. Jordanov
, E. Nikolova
, V. Boutchaktchiev
Abstract: Objectivite: The objective of this research is to derive a novel solution for a model system described by the advection-diffusion equation using a specific instance of the Simple Equations Method (SEsM), particularly the Modified Method of Simplest Equation and its extended versions. The study aims to investigate the propagation of nonlinear waves in tissue biomechanics and analyze their features through numerical simulations. Materials and Methods: This study employs the Modified Method of Simplest Equation, a recent advancement in the Simple Equations Method (SEsM), to derive solutions for the advection-diffusion equation. Numerical simulations are conducted to illustrate and analyze the characteristics of traveling wave solutions. Mathematical modeling focuses on advection (transport driven by bulk movement) and diffusion (transport due to concentration gradients) within the context of tissue biorheology. Results: The study derives a new traveling wave solution for the model system, showcasing the propagation of nonlinear waves within the tissue environment. Numerical simulations highlight the spatial and temporal behavior of these waves, demonstrating the advection and diffusion processes in the model. Discussion: The findings provide insights into the dynamics of nonlinear wave propagation in biological tissues, emphasizing the role of the advection-diffusion equation in modeling transport phenomena. This approach enhances understanding of how substances such as nutrients, oxygen, and signaling molecules navigate through the extracellular matrix, facilitating cellular communication. Conclusion: The study analyzed a new traveling wave solution for the advection-diffusion equation using the Simple Equations Method (SEsM). The results underline the importance of nonlinear PDEs in modeling tissue biomechanics and offer a valuable framework for studying the transport of substances in biological systems.
Series on Biomechanics, Vol.38, No.4(2024), 151-156
DOI: 10.7546/SB.20.04.2024
Keywords: advection-diffusion model; analytical solution; Nonlinear dynamics; simple equations method (SEsM)
References: (click to open/close) | [1] Vitanov N. K., 2010. Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of PDEs with polynomial nonlinearity, Communications in Nonlinear Science and Numerical Simulations, 15, 8, 2050–2060. [2] Vitanov N. K., 2011. Modified method of simplest equation: powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs, Communications in Nonlinear Science and Numerical Simulations 16, 3, 1176–1185. [3] Cousineau D. F., Goresky C. A., Rose C. P., Simard A., Schwab A. J.,1995. Effects of flow, perfusion pressure, and oxygen consumption on cardiac capillary exchange. J. Appl Physiol, 78, 4, 1350–1359. doi: 10.1152/jappl.1995.78.4.1350. [4] Beard D. A., Bassingthwaighte JB., 2000. Advection and diffusion of substances in biological tissues with complex vascular networks. Ann Biomed Eng., 28, 3, 253–268, doi: 10.1114/1.273. PMID: 10784090; PMCID: PMC3483094. [5] Beard D. A., Bassingthwaighte JB., 2001. Modeling advection and diffusion of oxygen in complex vascular networks, Ann Biomed Eng. 29, 4, 298–310, doi: 10.1114/1.1359450. [6] Vitanov N. K., Busse F. H., 1997. Upper bounds on heat transport in a horizontal fluid layer with stress-free boundaries, ZAMP, 48, Birkh ̈auser Verlag, Basel, 310 – 324 doi.org/10.1007/PL00001478 [7] Edissonov I., Ranchev S., 2022. Generalized mathematical models and simulation of tumor and immune processes, Series on Biomechanics, 36,.2, 153-161. DOI: 10.7546/SB.36.2022.02.15 [8] Nikolova E. V., Vitanov N. K., 2020. On the Possibility of Chaos in a Generalized Model of Three Interacting Sectors, Entropy, 22, 12, 1388. doi:10.3390/e22121388 [9] Vitanov N. K., Ausloos M., Rotundo G., 2012. Discrete model of ideological struggle accounting fot migration, Advances in Complex Systems, 15, 01, 1250049. doi:10.1142/S021952591250049X [10] Fetuga I. A., Olakoyejo O. T., Ewim D. R. E., Oluwatusin O., Adelaja A. O., Aderemi K. S., 2022. Numerical prediction of flow recirculation length zone in an artery with multiple stenoses at low and high Reynolds number, Series on Biomechanics, 36, 4, 10-24. doi:10.7546/SB.03.04.2022 [11] Vitanov N. K., 1998. Upper bound on the heat transport in a horizontal fluid layer of infinite Prandtl number, Physics Letters A, 248, 338-346. doi:10.1016/ S0375-9601(98)00674-41 [12] Vitanov N. K., Vitanov K. N., 2016. Box model of migration channels, Mathematical Social Sciences, 80, 108 – 114, doi:10.1016/j.mathsocsci.2016.02.001 [13] Cameron L., Larsen-Freeman D., 2007. Complex Systems and Applied Linguistics, Journal of Applied Linguistics, 17, 226 - 239. doi:10.1111/j.1473-4192. 2007.00148.x [14] Amaral L. A. N., Scala A., Barthelemy M., Stanley H. E., 2000. Classes of Small-World Networks, Proceedings of the National Academy of Sciences, 97, 21, 11149 – 11152. doi:10.1073/pnas.200327197 [15] Vitanov N. K., K. N. Vitanov, H. Kantz, 2020. On the Motion of Substance in a Chan- nel of a Network: Extended Model and New Classes of Probability Distributions, Entropy, 22, 1240. doi:10.3390/e22111240 [16] Kantz H., Schreiber T., 2004. Nonlinear Time Series Analysis, Cambridge University Press, Cambridge, UK. [17] Pikovsky A. S., Shepelyansky D. L., 2008. Destruction of Anderson Localization by a Weak Nonlinearity, Phys. Rev. Lett., 100, American Physical Society, 094101. doi:10.1103/PhysRevLett.100.094101 [18] Boeck T., N. K. Vitanov N. K., 2002. Low-dimensional chaos in zero-Prandtl-number B enard–Marangoni convection, Physical Review E, 65, 037203. doi:10.1103/ PhysRevE.65.037203 [19] Dimitrova Z. I., 2015. Numerical Investigation of Nonlinear Waves Connected to Blood Flow in an Elastic Tube With Variable Radius, Journal of Theoretical and Applied Mechanics 45, 4, 79 – 92. doi:10.1515/jtam-2015-0025 [20] Kumar P., Shekhar K., Tyagi A. P., 2023. Mathematical modelling of mucus transport in diseased airways: effects of airway constriction and mucus viscosity, Series on Biomechanics, 37,.4, 39-46. doi: 10.7546/SB.05.04.2023 [21] Vitanov N. K., 2012. Resultat connected to time series analysis and machine learning, Studies in Computational Intelligence, 934, 363 - 383. doi:10.1007/978-3-030-72284-5 17 [22] Struble R., 2018. Nonlinear Differential Equations, Dover, New York. [23] Vitanov N. K., Ausloos M., 2012. Knowledge epidemics and population dynamics models for describing idea diffusion, in Models of Science Dynamics, edited by A. Scharnhorst, K Boerner, P. van den Besselaar, Springer, Berin,. 65 – 129. doi:10.48550/arXiv.1201.0676 [24] Brockwell R. J., Davis R. A., Calder M. V., 2002 Introduction to Time Series and Forecasting, Springer, New York. [25] Kantz H., Holstein D., Ragwitz M., Vitanov N. K., 2004. Markov chain model for turbulent wind speed data, Physica A, 342, 315 – 321. doi:10.1016/j.physa.2004.01.070 [26] Chambel A. B., 1993. Applied chaos theory: A paradigm for complexity, Academic Press, Boston. [27] Ashenfelter K. T., Boker S. M., Waddell J. R., Vitanov N. K., 2009. Spatiotemporal symmetry and multifractal structure of head movements during dyadic conversation, Journal of Experimental Psychology: Human Perception and Performance, 35, 1072 – 1091. doi:10.1037/a0015017 [28] Vitanov N. K., 2000. Upper bounds on the heat transport in a porous layer, Physica D, 136, 322 – 339. doi: 10.1016/S0167-2789(99)00165-7 [29] Grossberg S., 1988. Nonlinear neural networks: Principles, mechanisms, and architectures, Neural Networks, 1, 17-61. doi:10.1016/0893-6080(88)90021-4 [30] Vitanov N. K., Hoffmann N., Wernitz B., 2014. Nonlinear time series analysis of vibrationdata from a friction brake: SSA, PCA, and MFDFA, Chaos Solitons and Fractals, 69, 90 – 99. doi:10.1016/j.chaos.2014.09.010 [31] Goldstein S., 1997. Social Psychology and Nonlinear Dynamical Systems Theory, Phychological Inquiry, 8 , 125 - 128. doi:10.1207/s15327965pli0802 6 [32] Vitanov N. K., Dimitrova Z. I., Kantz H., 2006. On the trap of extinction and its elimination, Physics Letters A, 346, 350-355. doi:10.1016/j.physleta.2005.09.043 [33] Vitanov N. K., Vitanov K. N., 2019. Statistical distributions connected to motion of substance in a channel of a network, Physica A, 527, 121174. doi:10.1016/j.physa.2019.121174 [34] Borisov R., Dimitrova Z. I., Vitanov N. K., 2020. Statistical Characteristics of Stationary Flow of Substance in a Network Channel Containing Arbitrary Number of Arms, Entropy, 22, 553. doi:https://doi.org/10.3390/e22050553 [35] Jordanov I. P., 2008. On the nonlinear waves in (2+ 1)-dimensional population systems, Comptes rendus de l’Academie Bulgare des sciences 61, 307–314. [36] Jordanov I. P., 2009. Nonlinear waves caused by diffusion of population members, Comptes rendus de l’Academie Bulgare des sciences 62, 33–40. [37] Jordanov I. P., 2010. Coupled Kink Population Waves, J. Theoretical and Applied Mechanics, 40, 2, 93-98. [38] Jordanov I. P., Dimitrova Z. I., 2010. On Nonlinear Waves of Migration, Journal of Theoretical and Applied Mechanics, 40,.1 89–96. [39] Jordanov I. P., Nikolova E. V., 2013. On nonlinear waves in the spatio-temporal dynamics of interacting populations, Journal of Theoretical and Applied Mechanics, 43, 69–76. doi:10.2478/jtam-2013-0015 [40] Dushkov I. N., Jordanov I. P., Vitanov N. K., 2017. Numerical modeling of dynamics of a population system with time delay, Mathematical Methods in the Applied Sciences, 41, 8377 – 8384. doi:10.1002/mma.4553 [41] Vitanov N. K., Jordanov I. P., Dimitrova Z. I., 2009. On nonlinear population waves, Applied Mathematics and Computation, 215, 2950–2964. doi:10.1016/j.amc. 2009.09.041 [42] Vitanov N. K., Jordanov I. P., Dimitrova Z. I., 2009. On nonlinear dynamics of interacting populations: Coupled kink waves in a system of two populations, Communications in Nonlinear Science and Numerical Simulation, 14, 2379–2388. doi:10.1016/j.cnsns.2008.07.015 [43] Martinov N., Vitanov N. K., 1992. On the correspondence between the self-consistent 2D Poisson-Boltzmann structures and the sine-Gordon waves, Journal of Physics A: Mathematical and General, 25, L51 – L56. doi:10.1088/0305-4470/25/2/004 [44] Martinov N., Vitanov N. K., 1992. On some solutions of the two-dimensional sine-Gordon equation, Journal of Physics A: Mathematical and General, 25, L419 – L426. doi:10.1088/0305-4470/25/8/007 [45] Martinov N., Vitanov N. K., 1992. Running wave solutions of the two-dimensional sine- Gordon equation, J. Phys A: Math. Gen., 25,12, 3609 – 3613. doi:10.1088/0305-4470/25/12/021 [46] Martinov N., Vitanov N. K., 1994. New class of running-wave solutions of the (2+1) - dimensional sine-Gordon equation, Journal of Physics A: Mathematical and General, 27, 4611 – 4618. doi:10.1088/0305-4470/27/13/034 [47] Martinov N., Vitanov N. K., 1994. On self-consistent thermal equilibrium structures in two–dimensional negative-temperature systems, Canadian Journal of Physics, 72, 618 – 624. doi:10.1139/p94-079 [48] Vitanov N. K., Martinov N., 1996. On the solitary waves in the sine-Gordon model of the two-dimensional Josephson junction, Zeitschrift f ̈ur Physik B, 100, 129 – 135. doi:10.1007/s002570050102 [49] Vitanov N. K., 1996. On travelling waves and double-periodic structures in two- dimensional sine-Gordon systems, Journal of Physics A: Mathematical and General, 29, 5195 – 5207. doi:10.1088/0305-4470/29/16/036 [50] Vitanov N. K., 1998. Complicated exact solutions to the 2+ 1-dimensional sine-Gordon equation, ZAMM, 78, S787 - S788. [51] Vitanov N. K., 1998. Breather and soliton wave families for the sine–Gordon equation, Proc. Roy. Soc. London A, 454, 2409 – 2423. doi:10.1098/rspa.1998.0264 [52] Dimitrova Z. I., Vitanov N. K., 2000. Influence of adaptation on the nonlinear dynamics of a system of competing populations, Physics Letters A, 272 368—380. [53] Dimitrova Z. I., Vitanov N. K., 2001, Adaptation and its impact on the dynamics of a system of three competing populations, Physica A, 300, 91—115. [54] Dimitrova Z. I., Vitanov N. K., 2001. Dynamical consequences of adaptation of the growth rates in a system of three competing populations, J. Phys A: Math. Gen. 34, 7459–7473. [55] Dimitrova Z. I., Vitanov N. K., 2004. Chaotic pairwise competition, Theoretical Population Biology, 66, 1–12. [56] Vitanov N. K., 2010. Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of PDEs with polynomial nonlinearity, Communications in Nonlinear Science and Numerical Simulation, 15, 2050 – 2060. doi:10.1016/j.cnsns.2009.08.011 [57] Vitanov N. K., Dimitrova Z. I., 2010, Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model PDEs from ecology and population dynamics, Communications in Nonlinear Science and Numerical Simulation 15, 2836 – 2845. 10.1016/j.cnsns.2009.11.029 [58] Vitanov N. K., Dimitrova Z. I., Kantz H., 2010. Modified method of simplest equation and its application to nonlinear PDEs, Applied Mathematics and Computation 216, 2587 - 2595, 216, 2587 – 2595. doi:10.1016/j.amc.2010.03.102
|
|
| Date published: 2024-12-11
(Price of one pdf file: 39.00 BGN/20.00 EUR)