Рrotective effects of two standard preservation media on irradiated erythrocytes under storage conditions: A rheological comparative evaluation
S. Porini
, B. D. Riquelme
, H. V. Castellini
, G. Detarsio
, A. Aresi
, N. Manzelli
, L. Di Tullio
, A. Acosta
, M. Galassi
, A. I. Alet
Abstract: Introduction: Transfusion units are irradiated in hemotherapy centers to prevent graft-versus-host disease by inactivating donor lymphocytes. High-energy photon radiation damages the DNA of nucleated blood cells, shortening the lifespan of erythrocytes from 35 (CPDA-1) or 42 (CPD-Optisol®) to 28 days (according to Argentine regulations). The mean corpuscular volume and free sodium and potassium levels are the most affected biochemical parameters. The preservation media commonly used during red blood cell storage are designed to protect them from this damage. Objective: The aim was to evaluate the alteration in the hemorheological properties of gamma-irradiated erythrocyte concentrates storage in two typical preservation media. Materials and Methods: Erythrocyte concentrate units preserved in CPDA-1 or CPD-Optisol® were utilized for the experiments. Each unit was divided into 6 satellite bags, 5 of which were irradiated at different doses (2, 5, 10, 15, and 25 Gy), and the remaining one was used as a control (0 Gy). Samples from each bag were analyzed weekly for 35 days. The viscoelastic and aggregation parameters of the erythrocyte were determined using the Erythrocyte Rheometer and the Optical Chip Aggregometer. Results: Hemorheological parameters exhibited different changes depending on the storage time, the gamma dose, and the specific preservation medium used. Discussion: The data obtained on the erythrocyte damages due to the radiation dose and storage are related to the different properties of the two standard preservation media evaluated. Conclusion: Results could help to design a new preservation medium for irradiated red blood cell units reducing damage caused by storage.
Series on Biomechanics, Vol.38, No.4(2024),24-31
DOI: 10.7546/SB.04.04.2024
Keywords: blood preservation media; blood storage; Erythrocyte irradiation; hemorheology; transfusional units
References: (click to open/close) | [1] Murphy, M. F. and Pamphilon D. H., 2009. Practical Transfusion Medicine. 3rd edition. University of Oxford, Oxford, UK. [2] IAEA TECDOC-934, 1997. Effects of ionizing radiation on blood and blood components: A survey. [3] Tommie L. Norris, 2019. Porth Fisiopatología. Alteraciones de la salud. Conceptos básicos. 10.a ed. Wolters Kluwer, 622-623. ISBN: 978-84-17602-09-3. [4] Guerrero B., López M., 2015. Generalidades del sistema de la coagulación y pruebas para su estudio. Investigación Clínica 56, 4, 432-454. [5] Igbokwe N. A., 2018. A review of the factors that influence erythrocyte osmotic fragility. Sokoto Journal of Veterinary Sciences 16, 4, 1-23. [6] Balasubramanyam P, Basavarajegowda A, Hanumanthappa N, Ram A, Negi VS., 2022. Storage lesions after irradiation: Comparison between blood stored in citrate phosphate dextrose adenine and saline adenine glucose mannitol. Global Journal of Transfusion Medicine 7, 123-8. [7] Reverberi R., Govoni M. and Verenini M., 2007. Deformability and viability of irradiated red cells. Annali dell’Istituto Superiore di Sanità 43, 2, 176-185. [8] Adams F., Bellairs G. R. M., Bird A. R., Oguntibeju O. O., 2015. Biochemical Storage Lesions Occurring in Nonirradiated and Irradiated Red Blood Cells: A Brief Review. BioMed Research International, 8 pages. DOI:10.1155/2015/968302. [9] Adams F., Bellairs G. R. M., Bird A. R., Oguntibeju O. O., 2018. Metabolic effects occurring in irradiated and non-irradiated red blood cellular components for clinical transfusion practice: An in vitro comparison, African Journal of Laboratory Medicine 7, 1, a606. DOI:10.4102/ajlm.v7i1.606. [10] Kim Y. K., Kwon E. H., Kim D. H., Won D. I., Shin S., Suh J. S., 2008. Susceptibility of oxidative stress on red blood cells exposed to gamma rays: Hemorheological evaluation. Clinical Hemorheology and Microcirculation 40, 315–324. DOI:10.3233/CH-2008-1144. [11] Maruyama T., Hieda M., Mawatari S., Fujino T., 2022. Rheological Abnormalities in Human Erythrocytes Subjected to Oxidative Inflammation, Frontiers in Physiology 13, 837926. DOI: 10.3389/fphys.2022.837926. [12] Riquelme, B. Foresto, P. Valverde, J. Rasia, R. J., 2000. Alterations to complex viscoelasticity of erythrocytes during storage. Clinical Hemorheology and Microcirculation 22, 181-188. [13] Alet A. I., Porini S., Detarsio G., Aresi A., Di Tullio L., Manzelli N., Acosta A., Galassi M. E., Riquelme B. D., 2024. Estudio preliminar del efecto de las radiaciones gamma sobre la concentración de iones plasmáticos en unidades transfusionales. Anales AFA 35, 1, 21-24. [14] Riquelme B., Albea B., Marenzana A., Castellini H. Reómetro Eritrocitario, 2013. Patente de Invención AR 091467 B1. https://lens.org/002-392-548-778-992. [15] Toderi M. Castellini H., Riquelme B.D., 2017. Descriptive parameters of the erythrocyte aggregation phenomenon using a laser transmission optical chip, Journal of Biomedical Optics 22, 1, 017003. DOI:10.1117/1.JBO.22.1.017003. [16] Toderi M., Castellini H., Riquelme B., 2015. Simplified variant of an optical chip to evaluate aggregation of red blood cells. SPIE Biophotonics South America Proceedings 95313X, DOI:10.1117/12.2180907. [17] International Committee for Standardization in Hematology (Expert Panel of Blood Rheology), 1980.Guidelines for blood viscosity and erythrocyte deformability. Clinical Hemorheology and Microcirculation 6, 563-573. [18] Anonymous, 2010. Ethical guidelines for publication in Clinical Hemorheology and Microcirculation. Clinical Hemorheology and Microcirculation 44, 1-2. [19] Riquelme, B., Estrada, E., Castellini, H., Acosta, A., Chinelatto, A., Tac, I., Borraz, J., Di Tullio, L., Galassi, M., 2019. Preliminary study of alterations in human red blood cells by irradiation with high energy photons, 107-108. Blucher, DOI 10.5151/biofisica2019-30 [20] Estrada, E., Castellini, H., Acosta, A., Chinelatto, A., Tack, I., Borraz, J., Di Tullio, L., Riquelme B.D., Galassi, M., 2020. Estudio preliminar de los efectos de las radiaciones Gamma sobre los glóbulos rojos humanos. Anales AFA 31,2, 51-54. [21] Shamsudin, S., Abu Hassan, A., Ahmad, Z., Harun, A., Dzomir, A., 2015. Development of Irradiation Procedure for Gamma Irradiation Chamber Bio beam GM 8000, Nuclear Technical Convention, Malaysia. [22] Nuclear Data Service, International Atomic Energy Agency. https://www-nds.iaea.org [23] Riquelme B., Castellini H., Albea B., 2018. Linear and Nonlinear Viscoelasticity of Red Blood Cells using a New Optical Erythrocyte Rheometer. OSA Technical Digest. Th4A.41. https://doi.org/10.1364/LAOP.2018.Th4A.41 [24] Rasia, R. J., 1995. Quantitative evaluation of erythrocyte viscoelastic properties from diffractometric data: Applications to Hereditary Spherocytosis, Thalassaemia and Hemoglobinopathy. Clinical Hemorheology and Microcirculation 15, 177-189. [25] Riquelme, B. Valverde, J. Rasia, R. J., 1999. Optical method to determine the complex viscoelasticity parameters of human red blood cells. In: Megha Singh, Patil, Radhakrishnan and Reddy (Eds.), Medical Diagnostic techniques and Procedures. Narosa Publishing House, 249-255. [26] Toderi M., Lerda N., Buszniez P., Riquelme B.D., 2017. An optical chip aggregometer based on laser transmission to detect alterations in the aggregation of glycosylated RBC. Proceedings of SPIE 10376, Novel Optical Systems Design and Optimization XX, 103760U, DOI: 10.1117/12.227332. [27] Toderi M., Castellini H., Riquelme B., 2015. Simplified variant of an optical chip to evaluate aggregation of red blood cells. SPIE Biophotonics South America Proceedings 95313X, DOI:10.1117/12.2180907. [28] Riquelme B. D., Toderi M., Batista M., Galassi M. E., Castellini H., Estrada E., Alet A. I. 2022. New insights into the mechanics of erythrocytes: effects of radiation and several drugs of biomedical interest. Series on Biomechanics 36, 1, 61-69. DOI: 10.7546/SB.08.2022.
|
|
| Date published: 2024-12-11
(Price of one pdf file: 39.00 BGN/20.00 EUR)