Микрореологические ответы эритроцитов на газотрансмиттеры, путем ингибирования гуанилатциклазы, NO-синтазы, блокирования АТФ-зависимых и кальций-зависимых калиевых каналов
А. Муравьев

, И. Тихомирова

, Е. Волкова

, А. Приезжев

, А. Луговцов

, П. Михайлов

Abstract: Введение: Известно положительное влияние газотрансмиттеров (ГТ), оксида азота (NO) и сероводорода (H2S) на микрореологию клеток крови. Однако механизмы микрореологических изменений в эритроцитах остаются недостаточно изученными.
Цель: данное исследование направлено на изучение микрореологических ответов эритроцитов на действие доноров ГТ, субстратов их эндогенного синтеза, и анализ внутриклеточных сигнальных путей, связанные с этими процессами.
Методы: эритроциты были отделены от плазмы, отмыты, ресуспендированы в растворе Рингера. Клетки инкубировали: с нитропруссидом натрия (НПН, 100 мкМ), с донором H2S гидросульфидом натрия (NaHS, 100 мкМ), с ингибитором растворимой гуанилатциклазы (ODQ, 0,5 мкМ), с блокатором АТФ-зависимых К+-каналов глибенкламидом (GcL, 100 мкМ) и блокатором Са2+-зависимых К+-каналов (KCa3.1) – клотримазолом (CLM, 50,0 мкМ). После инкубации с препаратами регистрировали деформируемость эритроцитов (ДЭ) и их агрегацию (АЭ).
Результаты: После инкубации эритроцитов с НПН выявлено увеличение ДЭ на 9% (p<0,01). В этих условиях АЭ снизилась на 32% (p<0,01). Увеличение ДЭ и уменьшение АЭ также наблюдалось после инкубации клеток с NaHS на 10 и 28%, соответственно. При ингибировании s-GC с помощью ODQ микрореологические эффекты НПН и NaHS не проявлялись. Однако блокирование каналов KATP не устраняло увеличение ДЭ и уменьшение агрегации под влиянием NaHS. В то время как блокирование каналов KCa3.1 с помощью CLM практически полностью устраняло эффекты NaHS.
Заключение: Таким образом, результаты исследования позволяют сделать вывод о том, что эффекты NO и H2S могут реализовываться в эритроцитах с использованием сигнального пути s-GC-cGMP и, возможно, через активацию каналов KCa3.1.
Keywords: агрегация; деформируемость; газотрансмиттеры; H2S; ионные каналы; L-аргинин; L-цистеин; NO; Эритроциты
References: (click to open/close) | [1] Baskurt, O.K. Meiselman, H.J., 2003. Blood rheology and hemodynamics Semin. Thromb. Hemost, 29, 5, 435–450. doi: 10.1055/s-2003-44551. [2] Alexy, T., Detterich, J., Connes, P., Toth, K., Nader, E., Kenyeres, P., Arriola-Montenegro J., Ulker P., Simmonds M.J., 2022. Physical Properties of Blood and their Relationship to Clinical Conditions. Front Physiol.13, 906768. doi: 10.3389/fphys.2022.906768. [3] Stoltz, J.F., Donner, M., Muller, S., Larcan A., 1991. Hemorheology in clinical practice. Introduction to the notion of hemorheologic profile. J Mal Vasc. 62, 61–70. [4] Popel, A.S., Johnson, P.C., 2005. Microcirculation and Hemorheology. Annu. Rev. Fluid. Mech. 37, 43–69. doi: 10.1146/annurev.fluid.37.042604.133933. [5] Danielczok, J.G., Terriac, E.,Hertz,L.,Petkova-Kirova,P.,Lautenschläger,F., Laschke, M.W., Kaestner, L., 2017. Red Blood Cell Passage of Small Capillaries Is Associated with Transient Ca2+-mediated Adaptations. Front Physiol. 8, 979. doi: 10.3389/fphys.2017.00979. [6] Ugurel, E., Goksel, E., Cilek, N., Kaga, E., Yalcin, O., 2022. Proteomic Analysis of the Role of the Adenylyl Cyclase-cAMP Pathway in Red Blood Cell Mechanical Responses. Cells. 11, 7, 1250. doi: 10.3390/cells11071250. [7] Cilek, N., Ugurel, E., Goksel E, Yalcin, O., 2024. Signaling mechanisms in red blood cells: A view through the protein phosphorylation and deformability. J Cell Physiol. 239, 3, e30958. doi: 10.1002/jcp.30958. [8] Brunati, M., Bordin, L., Clari, G., Moret, V., 1996. The Lyn-catalyzed Tyr phosphorylation of the transmembrane band 3 protein of human erythrocytes. Eur. J. Biochem. 240, 394–399. doi.org/10.1111/j.1432-1033.1996.0394h.x [9] Minetti, G., Ciana, A., Balduini, C., 2004. Differential sorting of tyrosine kinases and phosphotyrosine phosphatases acting on band 3 during vesiculation of human erythrocytes. Biochem. J. 377, 489–497. doi: 10.1042/BJ20031401. [10] Saldanha, C., Silva, A.S., Gonçalves, S., Martins-Silva, J., 2007. Modulation of erythrocyte hemorheological properties by band 3 phosphorylation and dephosphorylation. Clin. Hemorheol. Microcirc. 36, 183–194. [11] Bor-Kucukatay, M., Wenby, R.B., Meiselman, H.J., Baskurt, O.K., 2003. Effects of nitric oxide on red blood cell deformability. Am. J. Physiol. Heart Circ. Physiol. 284, 1577–1584. doi: 10.1152/ajpheart.00665.2002. [12] Uyuklu, M., Meiselman, H.J., Baskurt, OK., 2009. Role of hemoglobin oxygenation in the modulation of red blood cell mechanical properties by nitric oxide. Nitric Oxide. 21, 1, 20-6. doi: 10.1016/j.niox.2009.03.004. [13] Truss, N.J., Warner, T.D., 2011. Gasotransmitters and platelets. Pharmacol Ther. PharmacolTher. 132, 2, 196-203. doi: 10.1016/j.pharmthera.2011.07.001. [14] Chen, K., Popel, A.S., 2009. Nitric oxide production pathways in erythrocytes and plasma. Biorheology. 46, 107-119. doi: 10.3233/BIR-2009-0531. [15] Mozar, A., Connes, P., Collins, B., Hardy-Dessources, M.D., Romana, M., Lemonne, N., Bloch, W., Grau, M., 2016. Red blood cell nitric oxide synthase modulates red blood cell deformability in sickle cell anemia. Clin. Hemorheol. Microcirc. 64, 47–53. doi: 10.3233/CH-162042. [16] Muravyov, A.V., Antonova, N., Tikhomirova, I.A., 2019. Red blood cell micromechanical responses to hydrogen sulphide and nitric oxide donors: Analysis of crosstalk of two gasotransmitters (H2S and NO). Series on Biomechanics 33(2), 34-40. [17] Antonova, N., Khristov, K., Alexandrova, A., Muravyov, A., Velcheva, I., 2023. Development of experimental microfluidic device and methodology for assessing microrheological properties of blood. Clin. Hemorheol. Microcirc. 3, 3, 231-245. doi: 10.3233/CH-221631. [18] Feelisch, M., Kotsonis, P., Siebe, J., Clement, B., Schmidt, H.H., 1999. The soluble guanylyl cyclase inhibitor 1H-[1,2, 4]oxadiazolo[4,3,-a] quinoxalin-1-one is a nonselective heme protein inhibitor of nitric oxide synthase and other cytochrome P-450 enzymes involved in nitric oxide donor bioactivation. Mol. Pharmacol. 56, 2. 243–253. [19] Mustafa, A.K., Gadalla, M.M., Snyder, SH., 2009. Signalling by gasotransmitters. Sci. Signal.2, 2-8. doi: 10.1126/scisignal.268re2 [20] Grau, M., Mozar, A., Charlot, K., Lamarre ,Y., Weyel, L., Suhr, F., 2015. High red blood cell nitric oxide synthase activation is not associated with improved vascular function and red blood cell deformability in sickle cell anaemia. Br. J. Haematol. 168, 728–736. doi: 10.1111/bjh.13185 [21] Korhonen, R., Lahti, A., Kankaanranta, H., Moilanen, E., 2005. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy. 4,4, 471-9. doi: 10.2174/1568010054526359. [22] Coletta, C., Papapetropoulos, A., Erdelyi, K., Olah, G., Módis, K., Panopoulos, P., Asimakopoulou, A., Gerö, D., Sharina, I., Martin, E., Szabo, C., 2012. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci U S A. 109, 23, 9161-6. doi: 10.1073/pnas.1202916109. [23] Bucci, M., Papapetropoulos, A., Vellecco, V., Zhou, Z., Pyriochou, A., Roussos, C., Roviezzo, F., Brancaleone, V., Cirino, G.,2010. Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol. 30, 10, 1998-2004. doi: 10.1161/ATVBAHA.110.209783. [24] Yam, M.F., Tan, C.S., Shibao, R., 2018. Vasorelaxant effect of sinensetin via the NO/sGC/cGMP pathway and potassium and calcium channels. Hypertens Res. 2018;41(10):787-797. doi: 10.1038/s41440-018-0083-8. [25] King, A.L., Polhemus, D.J., Bhushanb, S., Otsukab, H., Kondoa, K., 2014. Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. PNAS. 111, 3182–3187. doi: 10.1073/pnas.1321871111. [26] King, A.L., 2018. Hydrogen Sulfide Biochemistry and Interplay with Other Gaseous Mediators in Mammalian Physiology. Oxid Med Cell Longev. 6290931. doi: 10.1155/2018/6290931. eCollection 2018. [27] Petkova-Kirova, P., Murciano, N., Iacono, G., Jansen, J., Simionato, G., Qiao, M., Van der Zwaan, C, Rotordam, M.G., John, T., Hertz, L., Hoogendijk, A.J., Becker, N., Wagner, C., Von Lindern, M., Egee, S., Van den Akker, E., Kaestner, L., 2024. The Gárdos Channel and Piezo1 Revisited: Comparison between Reticulocytes and Mature Red Blood Cells. Int J Mol Sci. 25, 3, 1416. doi: 10.3390/ijms25031416. [28] Kaestner, L., Bogdanova., A, Egee, S., 2020. Calcium Channels and Calcium-Regulated Channels in Human Red Blood Cells. Adv Exp Med Biol. 1131, 625-648. doi: 10.1007/978-3-030-12457-1_25. [29] Kuck, L., Peart, J.N. Simmonds, M.J., 2022. Piezo1 regulates shear-dependent nitric oxide production in human erythrocytes. Am J Physiol Heart Circ Physiol. 323, 1, H24-H37. doi: 10.1152/ajpheart.00185.2022. [30] Rogers, S., Lew, V.L., 2021. Up-down biphasic volume response of human red blood cells to PIEZO1 activation during capillary transits. PLoS Comput Biol. 17, 3, e1008706. doi: 10.1371/journal.pcbi.1008706. [31] Bizjak, D.A., Brinkmann, C., Bloch W., Grau, M., 2015. Increase in red blood cell-nitric oxide synthase dependent nitric oxide production during red blood cell aging in health and disease: A study on age dependent changes of rheologic and enzymatic properties in red blood cells. PLoS ONE.10, 4, e0125206. doi.org/10.1371/journal.pone.0125206 [32] Petrov, V., Lijnen, P.,1996. Regulation of human erythrocyte Na+/H+ exchange by soluble and particulate guanylate cyclase. Am J Physiol. 271, 1556-1564. [33] Montanaro, R., Vellecco, V., Torregrossa, R., Casillo, G.M., Manzo, O.L., Mitidieri, E., Bucci, M., Castaldo, S., Sorrentino, R., Whiteman, M., Smimmo, M., Carriero, F., Terrazzano, G., Cirino, G., d'Emmanuele di Villa Bianca, R., Brancaleone, V., 2023. Hydrogen sulfide donor AP123 restores endothelial nitric oxide-dependent vascular function in hyperglycemia via a CREB-dependent pathway. Redox Biol. 62, 102657. doi: 10.1016/j.redox.2023.102657.
|
|
| Date published: 2024-12-11
(Price of one pdf file: 39.00 BGN/20.00 EUR)