Numerical simulation mechanical signal in cortical/ trabecular interface region bone
I. Soltani, A. Barkaoui
Abstract: The complex hierarchical structure of bone is a living material characterized by its significant mechanical properties. Bone is subject to constant physiological and mechanical stresses, so bone quality constantly changes over time through the process of bone remodeling. Based on experimental results obtained by [1] and [2], we specifically concentrate on bone remodeling that occurs in the cortical/trabecular zone or transition zone. The objective of this work is to model the femoral bone remodeling process under dynamic and quasi-static loading describing its physical activity for different high, medium, and low levels to generate a numerical model of the femoral bone cell transduction phenomenon caused by different levels of mechanical loading as a function of time. To achieve this objective, the finite element method was used. According to this work, it was shown that bone remodeling plays the role of a reorganization process to maintain a good balance in the cortical/trabecular area of the bone, the bone volume fraction and the transduction signal showed variable responses. These results may provide a tool to define the causes of altered bone remodeling and provide a medical solution.
Series on Biomechanics, Vol.37, No.4 (2023), 47-53
Keywords: Bone remodeling process; damage; finite element method; signal; stimulus
References: (click to open/close) | [1] Zioupos, P., Cook, R.B., Hutchinson JR., 2008. Some basic relationships between density values in cancellous and cortical bone. J Biomech. 41, 1961-1968. [2] Adams, GJ., Cook, R B., Hutchinson JR., Zioupos P., 2018. Bone Apparent and Material Densities Examined by Cone Beam Computed Tomography and the Archimedes Technique: Comparison of the Two Methods and Their Results, Front. Mech. Eng., 3, February, 2018. [3] Florencio-Silva,R., Sasso,GR., Sasso-Cerri,E., Simões, MJ., Cerri, PS., 2015. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Research International, 2015, 1–17. [4] Zohar R., 2012. Signals between cells and matrix mediate bone regeneration in Bone Regeneration, P. H. Tal, Ed., In Tech. [5] Garcia, J.M., T. Rueberg, M. Doblaré, 2005. A Bone Remodelling Model Coupling Microdamage Growth and Repair by 3D BMU-Activity. Biomechan Model Mechanobiol, 2005, 4, 147–167. [6] Komarova, S. V, Smith, R. J., Dixon, S. J., Sims, S. M., & Wahl, L. M., 2003. Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. 33, 206–215. [7] Barkaoui, A., Kahla, R. Ben, Merzouki, T., & Hambli, R., 2019. Numerical simulation of apparent density evolution of trabecular bone under fatigue loading: effect of bone initial properties. Journal of Mechanics in Medicine and Biology, 19, 5. [8] Soltani.I, Ait oumghar. I, Barkaoui.i, lazgheb.T., 2021. Study of the mechanobiological behavior of the cortical/ cancellous bones interface, Journal of Engineering Research (JER). Doi :10.36909/jer.11297 [9] Lerebours.C, Thomas. C.D.L,Clement. J.G, Buenzli.P.R, Pivonka.P., 2015. The relationship between porosity and specific surface in human cortical bone is subject specific. Bone 72, 2015. 109–117 [10] Weinbaum S., 2003. Mechanotransduction and flow across the endothelial glycocalyx. Proceedings of the National Academy of Sciences 100,13, 7988-7995. [11] Han, Y., S. C. Cowin., 2004. Mechano-transduction and strain amplification in osteocyte cell processes. Proceedings of the National Academy of Sciences of the United States of America 101, 47, 16689-16694. [12] Lemaire, T., S. Naïli., 2005. Multiscale analysis of the coupled effects governing the movement of interstitial fluid in cortical bone. Biomechanics and Modeling in Mechanobiology 5, 1, 39-52. [13] Dunn, SL.,Olmedo, ML., 2015. Mécanotransduction : pertinence pour la pratique des physiothérapeutes - Comprendre notre capacité à affecter l'expression génétique par le biais de forces mécaniques". Physiothérapie, 96, 5, 712-721. doi :10.2522/ptj.20150073, electron microscope, Anat. Rec., 114, 3, 383–409. [14] Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G., 2018. Mécano-transduction cellulaire : de la tension à la fonction. Frontières en physiologie,9. doi :10.3389/fphys.2018.00824. [15] Burridge, K., Monaghan-Benson, E., & Graham, DM., 2019.Mécanotransduction : de la surface cellulaire au noyau via RhoA. Transactions philosophiques de la Royal Society B: Sciences biologiques, 374, 1779, 20180229. [16] Bolamperti. S, Villa.I, Rubinacci.A.,2022. Bone remodelling: an operational process ensuring survival and bone mechanical competence. Bone Research. https://doi.org/10.1038/s41413-022-00219-8. [17] Vander Meulen MC, Huiskes R., 2002. Why Mechanobiology: A survey article. Journal of Biomechanics 35, 4 401-414. [18] Szabó, M., Taylor, M., Thurner P.,2011. Mechanical properties of single bovine trabeculae are unaffected by strain rate”. Journal of biomechanics, 44, 5, 962–967. [19] Keller, T. S.,1994. Predicting the compressive mechanical behavior of bone. J Biomech 27, 1159 –1168. [20] Parfitt, Michael,A., Drezner Marc, K., Francis,H., Glorieux, John A Kanis, Hartmut Malluche, Pierre J Meunier, Susan M Ott, and Robert R Recker.,1987. Report of the ASBMR Histomorphometry Nomenclature Committee. Journal of Bone and Mineral Research 2, 6, 595–609. [21] Follet H, Boivin G, Rumelhart C, Meunier PJ.,2004. The degree of mineralization is a determinant of bone strength. A study on human calcaneus. Bone 34, 783–9. [22] Boivin,G., Farlay,D., Bala,Y., Doublier,A., Meunier, PJ., Delmas,PD., 2009. Influence of remodeling on the mineralization of bone tissue. Osteoporos Int 20, 6, 1023-6. Bone”, Rev. Mod. Phys., 31, 2, 359 393 [23] Bonfoh,N., Novinyo,E., Lipinski,P., 2011. Modeling of bone adaptative behavior based on cells activities. Biomech Model Mechanobiol 10, 789–798. [24] Hambli, R., 2014. Connecting Mechanics and Bone Cell Activities in the Bone Remodeling Process: An Integrated Finite Element Modeling. Frontiers in Bioengineering and Biotechnology, 2. doi:10.3389/fbioe.2014.00006. [25] Barkaoui, A., Rabeb BK., Merzouki,T., Hambli,R., 2017. Age and Gender Effects on Bone Mass Density Variation: Finite Elements Simulation. Biomechanics and Modeling in Mechanobiology 16, 2, 521–35. [26] Pandey, M.K., Gupta, S.C., Karelia, D., Gilhooley, P.J., Shakibaei, M., and Aggarwal, B.B., 2018. Dietary nutraceuticals as backbone for bone health. Biotechnol. Adv. 36, 1633–1648. [27] Sims, NA, Martin, TJ., 2019. Les ostéoclastes fournissent des signaux de couplage aux cellules de la lignée des ostéoblastes via plusieurs mécanismes. Revue annuelle de physiologie, 82, 1. est ce que je:10.1146/annurev-physiol-021119-034425 [28] Epsley, S., Tadros, S.,Farid, A.,Kargilis, D.,Mehta, S.,Rajapakse, CS., 2021. The effect of inflammation on bones. Devant. Physiol, 11, 511799.
|
|
| Date published: 2023-11-28
(Price of one pdf file: 39.00 BGN/20.00 EUR)