Mechanokinetics and power of the spontaneous isotonic contraction of visceral smooth muscles
S. Kosterin
, O. Tsymbalyuk
Abstract: The method for the mechanokinetic analysis of the spontaneous isotonic contraction-relaxation of the visceral smooth muscle was developed (using the example of the antrum of the rats). The equations for the change in the length of the muscle preparation in time, instant rate of contraction-relaxation, mechanic work, and strength of the muscle were obtained. The elaborated method was involved in the energy interpretation of the impact of acetylcholine neurotransmitter on the isotonic contraction of the smooth muscle. It was demonstrated that the following mechanokinetic and energy parameters were most sensitive to the stimulating effect of acetylcholine on the isotonic contraction of the muscle preparation: the maximal contraction velocity VC in the inflexion time point τС at the level of the contraction phase; the maximal mechanic work ΔАmax, which was completed during the time τ0 of achieving the contraction amplitude ∆Lmax; the mechanic work ΔАτС which was performed during the characteristic time τС; the maximal power of contraction Nmax at a time point τС; the averaged power of contraction Nm during the time τ0. It is assumed that the analytic method, tested in the article, may be promising for the quantitative interpretation of the effect of physical-chemical, physiologically active, and pharmacological factors on the mechanokinetics and the energetics of the smooth muscle functioning.
Series on Biomechanics, Vol.37, No.3 (2023), 43-56
Keywords: acetylcholine; Gastric smooth muscles; mechanokinetic and energetic analysis; spontaneous contractions
References: (click to open/close) | [1] Baker, S.A., Hwang, S.J., Blair, P.J., Sireika, C., Wei, L., Ro, S., Ward, S.M., Sanders, K.M., 2021. Ca2+ transients in ICC-MY define the basis for the dominance of the corpus in gastric pacemaking. Cell calcium 99, 102472. [2] Foong, D., Zhou, J., Zarrouk, A., Ho, V., O’Connor, M.D., 2020. Understanding the Biology of Human Interstitial Cells of Cajal in Gastrointestinal Motility. Int J Mol Sci 21, 12, 4540. [3] Ehlert, F.J., Pak, K.J., Griffin, M.T., 2012. Muscarinic agonists and antagonists: effects on gastrointestinal function. Handbook of experimental pharmacology, 208, 343–374. [4] Janssen, P., Karlsson, L.K., Nielsen, M.A., Gillberg, P.G., Hultin, L., 2010. Effect of muscarinic and nicotinic receptor antagonism on rat gastric motor activity. Pharmacology, 85, 5, 272–279. [5] Ruggieri, M.R., Braverman, A.S., Vegesna, A.K., Miller, L.S., 2014. Nicotinic receptor subtypes mediating relaxation of the normal human clasp and sling fibers of the upper gastric sphincter. Neurogastroenterology and motility 26,7, 1015–1025. [6] Vural, I.M., Ozturk Fincan, G.S., Bozkurt, N.B., Ercan, Z.S., Sarioglu, Y., 2009. Role of nicotinic acetylcholine receptor subtypes on nicotine-induced neurogenic contractile response alternation in the rabbit gastric fundus. European journal of pharmacology 602, 2-3, 395–398. [7] Kondo, T., Nakajima, M., Teraoka, H., Unno, T., Komori, S., Yamada, M., Kitazawa, T., 2011. Muscarinic receptor subtypes involved in regulation of colonic motility in mice: functional studies using muscarinic receptor-deficient mice. European journal of pharmacology, 670, 1, 236–243. [8] Lee, S. E., Kim, D. H., Son, S. M., Choi, S. Y., You, R. Y., Kim, C. H., Choi, W., Kim, H. S., Lim, Y. J., Han, J. Y., Kim, H. W., Yang, I. J., Xu, W. X., Lee, S. J., Kim, Y. C., & Yun, H. Y., 2020. Physiological function and molecular composition of ATP-sensitive K+ channels in human gastric smooth muscle. Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi 56, 0, 29–45. [9] Sakamoto, T., Unno, T., Kitazawa, T., Taneike, T., Yamada, M., Wess, J., Nishimura, M., Komori, S., 2007. Three distinct muscarinic signalling pathways for cationic channel activation in mouse gut smooth muscle cells. The Journal of physiology 582, Pt 1, 41–61. [10] Tanahashi, Y., Komori, S., Matsuyama, H., Kitazawa, T., Unno, T., 2021. Functions of Muscarinic Receptor Subtypes in Gastrointestinal Smooth Muscle: A Review of Studies with Receptor-Knockout Mice. International journal of molecular sciences 22, 2, 926. [11] Bekkelund, M., Sangnes, D.A., Hatlebakk, G.J, Aabakken, L. 2019. Pathophysiology of idiopathic gastroparesis and implications for therapy. Scand J Gastroenterol 54, 1, 8–17. [11] Camilleri, M., Grover, M., Farrugia, G., 2012. What are the important subsets of gastroparesis? Neurogastroenterol Motil 24, 7, 597-603. [12] Coulson, F.R., Jacoby, D.B., Fryer, A.D., 2002. Increased function of inhibitory neuronal M2 muscarinic receptors in trachea and ileum of diabetic rats. British journal of pharmacology, 135, 6, 1355–1362. [13] Moraveji, S., Bashashati, M., Elhanafi, S., Sunny, J., Sarosiek, I., Davis, B., Torabi, A., McCallum, R.W., 2016. Depleted interstitial cells of Cajal and fibrosis in the pylorus: Novel features of gastroparesis. Neurogastroenterology and Motility 28, 7, 1048–1054. [14] Uchiyama, T., Chess-Williams, R., 2004. Muscarinic receptor subtypes of the bladder and gastrointestinal tract. Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi 40, 6, 237–247. [15] Mehedinţeanu, A.M., Mirea, C.S., Stovicek, P.O., Schenker, M., Stancu, M.I., Ciurea, A.M., Streba, L., Istrate-Ofiţeru, A.M., Sas, T.N., Vere, C.C., 2021. Expression of M3 muscarinic acetylcholine receptors in gastric cancer. Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie 62,4, 1001–1010. [16] Tsymbalyuk, O.V., Kosterin, S.O., 2012. Na+,K+-ATPase, endogenous cardiosteroids and their transducer role. The Ukrainian Biochemical Journal 84,1, 5-17 (in Ukrainian) [17] Barlow, J.M., Goss, B.C., Hansel, S.L., Kolbe, A.B., Rackham, J.L., Bruining, D.H., Fletcher, J.G., 2015. CT enterography: technical and interpretive pitfalls. Abdominal imaging 40,5, 1081–1096. [18] Khalaf, A., Hoad, C.L., Menys, A., Nowak, A., Taylor, S.A., Paparo, S., Lingaya, M., Falcone, Y., Singh, G., Spiller, R.C., Gowland, P.A., Marciani, L., Moran, G.W., 2018. MRI assessment of the postprandial gastrointestinal motility and peptide response in healthy humans. Neurogastroenterology and motility: the official journal of the European Gastrointestinal Motility Society, 30,1, 10.1111/nmo.13182. [19] Orthey, P., Dadparvar, S., Kamat, B., Parkman, H.P., Maurer, A.H., 2020. Using gastric emptying scintigraphy to evaluate antral contractions and duodenal bolus propagation. American journal of physiology. Gastrointestinal and liver physiology 318,1, G203–G209. [20] Bohach, P.H., Pidhorna, L.A. 1981. Analitychnyi opys skorochen hladkomiazovykh klityn. Dopovidi AN URSR 12, B, 55-58. (in Ukrainian) [21] Burdyga, T.V., Kosterin, S.A., 1991, Kinetic analysis of smooth muscle relaxation. Gen Physiol Biophys 10, 6, 589–598. [22] Bursztyn, L., Eytan, O., Jaffa, A.J., Elad, D., 2007. Mathematical model of excitation-contraction in a uterine smooth muscle cell. Am J Physiol. Cell Physiol 292,5, C1816–C1829. [23] Bursztyn, L., Eytan, O., Jaffa, A.J., Elad, D., 2007. Modeling myometrial smooth muscle contraction. Ann N Y Acad Sci 1101, 110–138. [24] Kosterin, S.O., Babich, L.G., Shlykov, S.G., Danylovych, Iu.V., Veklich, Т.О., Mazur, Yu.Yu. Biochemical properties and regulation of smooth muscle cell Са2+-transporting systems. К.: Science opinion, 2016. 210р (in Ukrainian) [25] Kosterin. S., Tsymbalyuk, O., Holden, O., 2021. Multiparameter analysis of mechanokinetics of the contractile response of smooth muscles. Series on Biomechanics 35,1, 14-30. [26] Stålhand, J., Klarbring, A., Holzapfel, G.A., 2008. Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains. Progress in Biophysics and Molecular Biology 96,1-3, 465–481. [27] Tsymbalyuk, O.V., Kosterin, S.O., 2012. Thermomechanokinetics of viscoelastic deformation of smooth muscles in the rat gastrointestinal tract. I. Dynamic properties of the stretch in stomach smooth muscles. Studia Biologica 6,2, 87–98. (in Ukrainian) [28] Tsymbalyuk, O.V., Kosterin, S.O., 2012. Thermomechanokinetics of viscoelastic deformation of smooth muscles in the rat gastrointestinal tract. II. Thermomechanokinetics of hysteresis of stomach and large intestine smooth muscles. Studia Biologica 6,3, 73–84 (in Ukrainian) [29] Tsymbalyuk, O.V., Kosterin, S.O., 2013. Thermomechanokinetics of viscoelastic deformation of smooth muscles in rat gastroitestinal tract. III. The work of the viscoelastic stretch of antral stomach smooth muscles. Studia Biologica 7,1, 21-30. (in Ukrainian) [30] Tsymbalyuk, O.V., Kosterin., S.O., 2013. The application of the Wiegand-Snyder equation to the thermodynamic interpretation of highly elastic deformation of gastric smooth muscles. Dopovidi NAN Ukrainy 6, 162-167. (In Ukrainian) [31] Tsymbalyuk, O., Kosterin, S., 2021. Mechanokinetics and thermodynamics of highly elastic deformation of gastric smooth muscles under chronic intake of TiO2 nanocolloid. Series on Biomechanics 35, 4, 3-20. [32] Milanov, M.P., Stoyanov, I.N., Boev, K.K., 1984. Electro-mechanical coupling in the complex stomach smooth muscles. General Pharmacology 15, 2, 99–105. [33] Park, K.S., Cho, K.B., Hwang, I.S., Park, J.H., Jang, B.I., Kim, K.O., Jeon, S.W., Kim, E.S., Park, C.S., Kwon, J.G., 2016. Characterization of smooth muscle, enteric nerve, interstitial cells of Cajal, and fibroblast-like cells in the gastric musculature of patients with diabetes mellitus. World Journal of Gastroenterology 22,46, 10131-10139. [3] Chen, Y., Wang, H., Li, H., Liu, S., 2018. Long-Pulse Gastric Electrical Stimulation Repairs Interstitial Cells of Cajal and Smooth Muscle Cells in the Gastric Antrum of Diabetic Rats. Gastroenterol Res Pract, 6309157. [35] Cobine, C.A., Hannah, E.E., Zhu, M.H., Lyle, H.E., Rock, J.R., Sanders, K.M., Ward, S.M., Keef, K.D., 2017. ANO1 in intramuscular interstitial cells of Cajal plays a key role in the generation of slow waves and tone in the internal anal sphincter. J Physiol 595, 6, 2021-2041. [36] Means, S.A., Sneyd, J., 2010. Spatio-temporal calcium dynamics in pacemaking units of the interstitial cells of Cajal. Journal of Theoretical Biology 267, 2, 137-152. [37] Szymański, J., Janikiewicz, J., Michalska, B., Patalas-Krawczyk, P., Perrone, M., Ziółkowski, W., Duszyński, J., Pinton, P., Dobrzyń, A., Więckowski, M.R., 2017. Interaction of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure. International Journal of Molecular Sciences 18, 7, pii, E1576. [38] Drumm, B.T., Hwang, S.J., Baker, S.A., Ward, S.M., Sanders, K.M., 2019. Ca2+ signalling behaviours of intramuscular interstitial cells of Cajal in the murine colon. J Physiol 597,14, 3587-3617. [39] Patejdl, R., Noack, T., 2008. Calcium movement in smooth muscle and evaluation of graded functional intercellular coupling. Chaos (Woodbury, N.Y.) 28 , 10, 106311. [40] Zhang, C.H., Wang, P., Liu, D.H., Chen, C.P., Zhao, W., Chen, X., Chen, C., He, W.Q., Qiao, Y.N., Tao, T., Sun, J., Peng, Y.J., Lu, P., Zheng, K., Craige, S.M., Lifshitz, L.M., Keaney, J.F. Jr., Fogarty, K.E., ZhuGe, R., Zhu, M.S., 2016. The molecular basis of the genesis of basal tone in internal anal sphincter. Nature communications 7, 11358. [41] Fung, C., Unterweger, P., Parry, L.J., Bornstein, J.C., Foong, J.P., 2014. “VPAC1 receptors regulate intestinal secretion and muscle contractility by activating cholinergic neurons in guinea pig jejunum. Am J Physiol Gastrointest Liver Physiol. 306,9, G748-58. [42] Ono, N., Suzuki, S., Kawada, K., Yamaguchi, T., Azuma, Y. T., 2022. Stress decreases contraction of the colon, and the effects of stress are different among the regions of the colon. The Journal of veterinary medical science, 84, 8, 1061–1064. [43] Nasu, T., Takahashi, K., 2005. Effects of ouabain on contractions induced by manganese ions in Ca2+-free, isotonic solutions with varying concentrations of K+ in guinea-pig taenia coli. Fundamental & clinical pharmacology, 19, 3, 355–363. [44] Fornai, M., Colucci, R., Antonioli, L., Ippolito, C., Segnani, C., Buccianti, P., Marioni, A., Chiarugi, M., Villanacci, V., Bassotti, G., Blandizzi, C., Bernardini, N., 2014. Role of cyclooxygenase isoforms in the altered excitatory motor pathways of human colon with diverticular disease. British journal of pharmacology, 171, 15, 3728–3740. [45] Jones, B. S., Keightley, L. J., Harris, J. O., Wiklendt, L., Spencer, N. J., Dinning, P. G., 2021. Identification of neurogenic intestinal motility patterns in silver perch (Bidyanus bidyanus) that persist over wide temperature ranges. Neurogastroenterology and motility, 33, 5, e14037. [46] Tanahashi, Y., Komori, S., Matsuyama, H., Kitazawa, T., Unno, T., 2021. Functions of Muscarinic Receptor Subtypes in Gastrointestinal Smooth Muscle: A Review of Studies with Receptor-Knockout Mice. Int J Mol Sci., 22, 2, 926. [47] Wrzos, H. F., Tandon, T., Ouyang, A., 2004. Mechanisms mediating cholinergic antral circular smooth muscle contraction in rats. World journal of gastroenterology, 10, 22, 3292–3298.
|
|
| Date published: 2023-08-02
(Price of one pdf file: 39.00 BGN/20.00 EUR)