[1] Saha, T., Wang, X., Padhye, R., Houshyar, S., 2022. A review of recent developments of polypropylene surgical mesh for hernia repair. OpenNano 7, e100046. [2] Klosterhalfen, B., Junge, K., Klinge, U., 2005. The lightweight and large porous mesh concept for hernia repair. Expert Rev Med Devices 2, 1, 103–117. [3] Brown, C.N., Finch, J.G., 2010. Which mesh for hernia repair? Ann R Coll Surg Engl. 92, 4, 272-8. [4] Klinge, U., Klosterhalfen, B., 2012. Modified classification of surgical meshes for hernia repair based on the analyses of 1,000 explanted meshes. Hernia 16, 3, 251-258. [5] He, W., Cao, G., Gan, X., Fan, Y., Pei, B., Li, X., 2021. Evaluation methods for mechanical biocompatibility of hernia repair meshes: respective characteristics, application scope and future perspectives. Journal of Materials Research and Technology 13, 1826-1840. [6] Whitehead-Clarke, T., Karanjia, R., Banks, J., Beynon, V., Parker, S., Sanders, D., Mudera, V., Windsor, A., Kureshi, A., 2022. The experimental methodology and comparators used for in vivo hernia mesh testing: a 10-year scoping review. Hernia 26, 1, 297-307. [7] Gil, F.J., Manero, J.M., Planell, J.A., Vidal, J., Ferrando, J.M., Armengol, M., Quiles, M.T., Schwartz, S., Arbos, M.A., 2003. Stress relaxation tests in polypropylene monofilament meshes used in the repair of abdominal walls. Journal of Materials Science: Materials in Medicine 14, 811-815. [8] Asayesh, A., Yousefi, S., 2020. Effect of fabric structure on the tensile stress relaxation of net warp knitted fabrics. Journal of Textiles and Polymers 8, 2, 65-73. [9] Asayesh, A., Yousefi, S., 2022. The influence of mesh structure and strain level on the stress relaxation of warp-knitted surgical mesh for hernia repair. Journal of Textiles and Polymers 113, 3, 440-448. [10] Pashkouleva, D., Kirilova-Doneva, M., 2024, Comparative study of the viscoelastic behaviour of hernia meshes. Russian Journal of Biomechanics, 28, 2, 87-94. [11] Moalli, P.A., Papas, N., Menefee, S., Albo, M., Meyn, L., Abramowitch, S.D., 2008. Tensile properties of five commonly used mid-urethral slings relative to the TVT. Int Urogynecol J Pelvic Floor Dysfunct. 19, 5, 655-63. [12] Krause, H., Bennett, M., Forwood, M., Goh, J., 2008. Biomechanical properties of raw meshes used in pelvic floor reconstruction. Int. Urogynecol. J. 19, 12, 1677–1681. [13] Patterson, S.M., Ho, Y.C., Wang W.C., 2010. The Effect of Cyclic Loading on the Mechanical Performance of Surgical Mesh. EPJ Web of Conferences 6, e21007. [14] Li, X., Kruger, J.A., Jor, J.W.Y., Wong, V., Dietz, H.P., Nash, M.P., Nielsen, P.M.F., 2014. Characterizing the ex vivo mechanical properties of synthetic polypropylene surgical mesh. Journal of the Mechanical Behavior of Biomedical Materials 37, 48-55. [15] Rynkevic, R., Martins, P., Pereira, F., Ramião,N., Fernandes, A.A., 2017. In vitro study of the mechanical performance of hernia mesh under cyclic loading. J Mater Sci Mater Med. 28, 11, e176. [16] Junge, K., Klinge, U., Prescher, A., Giboni, P., Niewiera, M., Schumpelick, V., 2001. Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia 5, 113-118. [17] Earle, D.B., Mark, L.A., 2008. Prosthetic material in inguinal hernia repair: How do I choose? Surgical Clinics of North America 88, 1, 179-201. [18] Coda, A., Lamberti, R., Marorana S., 2012. Classification of prosthetics used in hernia repair based on weight and biomaterial. Hernia 16, 9-20. [19] Kirilova-Doneva, M., Pashkouleva D., 2023. Recommendations for personalize choice of hernia meshes used for inguinal hernia operations. Journal of Mechanics in Medicine and Biology 23, 6, e2340026. [20] Saberski, E., Orenstein, S., Novitsky, Y., 2011. Anisotropic evaluation of synthetic surgical meshes. Hernia 15, 1, 47–52.
|
|