Hemodynamics of BRASH Syndrome Observed in Gerontology
T. Maruyama
, M. Hieda
Abstract: Objective: BRASH syndrome is characterized by bradycardia, renal failure, atrioventricular (AV) nodal blockade, shock, and hyperkalemia. All these factors form a vicious cycle. However, the clinical profile of this unique syndrome in superaged society is unknown and hence the objective of this study. Methods: Cases of BRASH syndrome were recruited from patients hospitalized in our geriatric hospital within the last two years. Results: Two patients with this syndrome were prescribed with β-blockers and calcium channel blockers, and the triggers of this syndrome were gastric bleeding and urinary tract infection, respectively. Hypermagnesemia found in a case also underlies this syndrome, because magnesium is an intrinsic calcium channel blocker leading to AV nodal suppression. Discussion: Heart failure (HF) pandemic is coming in many countries. Guideline-recommended medications of HF have improved the prognosis of HF patients worldwide. However, such medications may induce either hyperkalemia, hypovolemia, or AV nodal inhibition leading to bradycardia. Dehydration and hemoconcentration also cause BRASH syndrome triggered by pandemic coronavirus disease 2019 (COVID-19). Hyperviscosity and hypercoagulability are reported, and erythrocyte filterability is impaired in COVID-19 patients. However, the exact hemorheological mechanisms of BRASH syndrome caused by COVID-19 are a matter of future research. Conclusion: Accurate diagnosis and appropriate management are required in patients with BRASH syndrome especially in the post COVID-19 era.
Series on Biomechanics, Vol.38, No.4(2024), 7-14
DOI: 10.7546/SB.02.04.2024
Keywords: BRASH syndrome; COVID-19; gerontology; heart failure; microcirculation
References: (click to open/close) | [1] Farkas, J. D., Long, B., Koyfman, A., Menson, K., 2020. BRASH syndrome: bradycardia, renal failure, AV blockade, shock, and hyperkalemia, J Emerg Med. 59, 216-223. [2] Sattar, Y., Bareeqa, S. B., Rauf, H., Ullah, W., Alraies, M. C., 2020. Bradycardia, renal failure, atrioventricular-nodal blocker, shock, and hyperkalemia syndrome diagnosis and literature review, Cureus. 12, e6985. [3] Ghumman, G. M., Kumar, A., 2021. BRASH syndrome leading to cardiac arrest and diffuse anoxic brain injury: an underdiagnosed entity, Cureus. 13, e18628. [4] Lai, P. C., Weng, T. I., Yu, J. H., 2024. BRASH syndrome progressing rapidly to cardiogenic shock: a case with confirmed excessive amlodipine concentration, CJEM. 26, 280-282. [5] Pata, R., Lutaya, I., Mefford, M., Arora, A., Nway, N., 2022. Urinary tract infection causing bradycardia, renal failure, atrioventricular nodal blockade, shock, and hyperkalemia (BRASH) syndrome: a case report and a brief review of the literature, Cureus. 14, e27641. [6] Maruyama, T., Kondo, S., Nomura, H., 2024. Case series of bradycardia, renal failure, atrioventricular nodal blockers, shock and hyperkalemia syndrome in patients with dementia, Geriatr Gerontol Int. 24, 737-738. [7] Bashour, T., Hsu, I., Gorfinkel, H. J., Wickramesekaran, R., Rios, J. C., 1975. Atrioventricular and intraventricular conduction in hyperkalemia, Am J Cardiol. 35, 199-203. [8] Ohmae, M., Rabkin, S. W., 1981. Hyperkalemia-induced bundle branch block and complete heart block, Clin Cardiol. 4, 43-46. [9] Wang, H. F., Tsai, S. C., Pan, M. S., Shiao, C. C., 2013. Complete heart block during potassium therapy in thyrotoxic periodic paralysis, J Emerg Med. 44, 61-64. [10] Letavernier, E., Couzi, L., Delmas, Y., Moreau, K., Murcott, O., de Précigout, V., 2006. Verapamil and mild hyperkalemia in hemodialysis patients: a potentially hazardous association, Hemodial Int. 10, 170-172. [11] Hegazi, M. O., Aldabie, G., Al-Mutairi, S., El Sayed, A., 2012. Junctional bradycardia with verapamil in renal failure--care required even with mild hyperkalaemia, J Clin Pharm Ther. 37, 726-728. [12] Chin, J. H., 1986. Differential sensitivity of calcium channels to dihydropyridines. the modulated receptor hypothesis, Biochem Pharmacol. 35, 4115-4120. [13] Karlberg, B. E., 1983. Adrenergic regulation of renin release and effects on angiotensin and aldosterone, Acta Med Scand Suppl. 672, 33-40. [14] Lindinger, M. I., 1995. Potassium regulation during exercise and recovery in humans: implications for skeletal and cardiac muscle, J Mol Cell Cardiol. 27, 1011-1022. [15] Moratinos, J., Reverte, M., 1993. Effects of catecholamines on plasma potassium: the role of alpha- and beta-adrenoceptors, Fundam Clin Pharmacol. 7, 143-153. [16] Traub, Y. M., Rabinov, M., Rosenfeld, J. B., Treuherz, S., 1980. Elevation of serum potassium during beta blockade: absence of relationship to the renin-aldosterone system, Clin Pharmacol Ther. 28, 765-768. [17] Carruthers, S. G., Freeman, D. J., Bailey, D. G., 1989. Synergistic adverse hemodynamic interaction between oral verapamil and propranolol, Clin Pharmacol Ther. 46, 469-477. [18] Anand, V., Nair, S., 2015. An unusual toxicity with beta blocker and calcium channel blocker, Indian J Crit Care Med. 19, 496-498. [19] Höcht, C., Bertera, F. M., Mayer, M. A., Taira, C. A., 2010. Issues in drug metabolism of major antihypertensive drugs: beta-blockers, calcium channel antagonists and angiotensin receptor blockers, Expert Opin Drug Metab Toxicol. 6, 199-211. [20] Gouveia, R., Veiga, H., Costa, A. A., Pereira, J., Lourenco, P., 2022. Bradycardia, renal failure, atrioventricular nodal blockade, shock, and hyperkalemia syndrome due to amlodipine: a case report of an underdiagnosed medical condition, Cureus. 14, e21144. [21] Shingarev, R., Allon, M., 2010. A physiologic-based approach to the treatment of acute hyperkalemia, Am J Kidney Dis. 56, 578-584. [22] Wynne, Z., Falat, C., 2023. Disorders of calcium and magnesium, Emerg Med Clin North Am. 41, 833-848. [23] Shah, P., Gozun, M., Keitoku, K., Kimura, N., Yeo, J., Czech, T., Nishimura, Y., 2022. Clinical characteristics of BRASH syndrome: systematic scoping review, Eur J Intern Med. 103, 57-61. [24] Lee, T. H., Salomon, D. R., Rayment, C. M., Antman, E. M., 1986. Hypotension and sinus arrest with exercise-induced hyperkalemia and combined verapamil/propranolol therapy, Am J Med. 80, 1203-1204. [25] Ponikowski, P., Voors, A. A., Anker, S. D., Bueno, H., Cleland, J. G. F., Coats, A. J. S., Falk, V., González-Juanatey, J. R., Harjola, V. P., Jankowska, E. A., Jessup, M., Linde, C., Nihoyannopoulos, P., Parissis, J. T., Pieske, B., Riley, J. P., Rosano, G. M. C., Ruilope, L. M., Ruschitzka, F., Rutten, F. H., van der Meer, P., for ESC Scientific Document Group., 2016. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC, Eur Heart J. 37, 2129-2200. [26] Chowdhury, T., Pokhriyal, S. C., Gupta, U., Kunwar, K., Hashmi, K., Devkota, S., Kopyt, M., Sherazi, A., 2024. Bradycardia, renal failure, atrioventricular block, shock, and hyperkalemia (BRASH) syndrome emergence in a unique intersection of COVID-19 and end-stage renal disease: a case report, Cureus. 16, e54695. [27] Prabhu, V., Hsu, E., Lestin, S., Soltanianzadeh, Y., Hadi, S., 2020. Bradycardia, renal failure, atrioventricular nodal blockade, shock, and hyperkalemia (BRASH) syndrome as a presentation of coronavirus disease 2019, Cureus. 12, e7816. [28] Mazzeffi, M. A., Chow, J. H., Tanaka, K., 2021. COVID-19 associated hypercoagulability: manifestations, mechanisms, and management, Shock. 55, 465-471. [29] Maier, C. L., Truong, A. D., Auld, S. C., Polly, D. M., Tanksley, C. L., Duncan, A., 2020. COVID-19-associated hyperviscosity: a link between inflammation and thrombophilia, Lancet. 395(10239), 1758-1759. [30] Kubánková, M., Hohberger, B., Hoffmanns, J., Fürst, J., Herrmann, M., Guck, J., Kräter, M., 2021. Physical phenotype of blood cells is altered in COVID-19, Biophys J. 120, 2838-2847. [31] Prudinnik, D. S., Sinauridze, E. I., Shakhidzhanov, S. S., Bovt, E. A., Protsenko, D. N., Rumyantsev, A. G., Ataullakhanov, F. I., 2022. Filterability of erythrocytes in patients with COVID-19, Biomolecules. 12, 782. doi: 10.3390/biom12060782. [32] Saldanha, C., 2022. The role of the erythrocyte on humans with COVID-19, Series on Biomechanics. 36, 39-43. [33] Palevsky, P.M., 2021. COVID-19 and AKI: where do we stand? J Am Soc Nephrol. 32, 1029-1032. [34] Głowacka, M., Lipka, S., Młynarska, E., Franczyk, B., Rysz, J., 2021. Acute kidney injury in COVID-19, Int J Mol Sci. 22, 8081. doi: 10.3390/ijms22158081. [35] Ahmadian, E., Hosseiniyan-Khatibi, S.M., Razi-Soofiyani, S., Abediazar, S., Shoja, M.M., Ardalan, M., Zununi-Vahed, S., 2021. Covid-19 and kidney injury: pathophysiology and molecular mechanisms, Rev Med Virol. 31, e2176. doi: 10.1002/rmv.2176.
|
|
| Date published: 2024-12-11
(Price of one pdf file: 39.00 BGN/20.00 EUR)