Biomedical Analysis of Lateral Lumbar Interbody Fusion (LLIF) Cage for Lumbar Vertebrae
A. A. Zulkefli, M. Hazli Mazlan
, H. Takano, N. S. Md Salleh, M .H. Jalil
Abstract: Objective: To develop the interbody cages implanted between the lumbar vertebrae by evaluating the strength of the bone model and the spinal cage. Materials and methods: In this study, finite element analysis (FEA) was applied using Mechanical Finder software (MF) to develop a 3D spine model lumbar vertebrae of the fourth and fifth lumbar vertebrae (L4 - L5) with various interbody cage designs, including honeycomb and rectilinear patterns with 50%, 70%, and 100% infill densities. The cage was made of polyether ether ketone (PEEK) and designed using Solidworks software. The interbody cage was inserted between L4-L5, identified from CT scans utilizing MF. The model was analyzed in MF to assess the strength of the interbody cage, with the results compared to mechanical properties values obtained by applying compression load to simulate spinal movements. Results: The results showed the best interbody cage design was the honeycomb pattern with 70% infill density because the honeycomb structure produced the lowest equivalent and maximum principal stress. Discussion: The findings indicate that when the yield and ultimate tensile strength of the material are higher than the equivalent and maximum principal stress, the risk of cage failure is lower. This is due to it having demonstrated the highest structural capability in comparison to the other cage designs. Consequently, it is imperative to consider that PEEK-based cages with higher infill density exhibit relatively lower stress production than those with lesser infill density. Conclusion: Choosing a mechanically compatible interbody cage design is crucial for achieving biomechanical success in spine surgery.
Series on Biomechanics, Vol.38, No.1 (2024), 45-56
DOI: 10.7546/SB.05.01.2024
Keywords: Degenerative Disc Disease; Finite Element Analysis; honeycomb; Lateral Lumbar Interbody Fusion; PEEK
References: (click to open/close) | [1] Battié, M. C., Joshi, A. B., Gibbons, L. E., 2019. Degenerative Disc Disease: What is in a Name? Spine 44, 1523–1529. [2] Gupta, V. K., Attry, S., Vashisth, N., Gupta, E., Marwah, K., Bhargav, S., Bhargav, S., 2016. Lumbar Degenerative Disc Disease: Clinical Presentation and Treatment Approaches. IOSR Journal of Dental and Medical Sciences 15, 12-23. [3] Rossdeutsch, A., Copley, P., Khan, S., 2017. Degenerative spinal disc disease and its treatment. Orthopaedics and Trauma 31, 378–387. [4] Nizam, N. A. H. M., Mazlan, M. H., Salleh, N. S. M., Abdullah, A. H., Jalil, M. H., Takano, H. and Nordin, N. D. D., 2021. Design and analysis of interbody fusion cage materials based on finite element analysis, 1st National Biomedical Engineering Conference, Institute of Electrical and Electronics Engineers, New York City, 7–12. [5] Pawar, A. Y., Hughes, A. P., Sama, A. A., Girardi, F. P., Lebl, D. R., and Cammisa, F. P., 2015. A Comparative Study of LLIF and PLIF in Degenerative Lumbar Spondylolisthesis. Asian Spine Journal 9, 668–674. [6] Stephan, N., Jennifer, S., Alexexander, P. H., 2017. Lateral Lumbar Interbody Fusion—Outcomes and Complications. Current Reviews of Musculoskeletal Medicine 10, 539–549. [7] Pawar, A. Y., Hughes, A. P., Girardi, F. P., Sama, A. A., Lebl, D. R., Cammisa, F. P., 2015. Lateral Lumbar Interbody Fusion. Asian Spine Journal 9, 978–983. [8] Kirnaz, S., Navarro-Ramirez, R., Gu, J., Wipplinger, C., Hussain, I., Adjei, J., Kim, E., Schmidt, F. A., Wong, T., Hernandez, R. N., 2020. Indirect Decompression Failure After Lateral Lumbar Interbody Fusion—Reported Failures and Predictive Factors: Systematic Review. Global Spine Journal 10, 8S-16S. [9] Mobbs, R. J., Phan, K., Malham, G., Seex, K., Rao, P. J., 2015. Lumbar Interbody Fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. Spine Surgery 1, 2–18. [10] Peck, J. H., Kavlock, K. D., Showalter, B. L., Ferrell, B. M., Peck, D. G., Dmitriev, A. E., 2018. Mechanical performance of lumbar intervertebral body fusion devices: An analysis of data submitted to the Food and Drug Administration. Journal of Biomechanics 78, 87–93. [11] N. Agarwal, M. D. White, X. Zhang, N. Alan, A. Ozpinar, D. J. Salvetti, Z. J. Tempel, D. O. Okonkwo, A. S. Kanter, D. K. Hamilton, 2020. Impact of endplate-implant area mismatch on rates and grades of subsidence following stand-alone lateral lumbar interbody fusion: an analysis of 623 levels. Journal of Neurosurgery Spine 33, 12–16. [12] Campbell, P. G., Cavanaugh, D . A., Nunley, P., Utter, P. A., Kerr, E., Wadhwa, R., Stone, M., 2020. PEEK versus titanium cages in lateral lumbar interbody fusion: A comparative analysis of subsidence. Neurosurgery Focus 49, 1-9. [13] Liao, J. C., Niu, C. C., Chen, W. J., Chen, L. H., 2008. Polyetheretherketone (PEEK) cage filled with cancellous allograft in anterior cervical discectomy and fusion. International Orthopaedics 32, 643–648. [14] Mazlan, M. H., Todo, M., Takano, H., Yonezawa, I., Abdullah, A. H., Jalil, M. H., Salleh, N. S. M., 2022. Biomechanical evaluation of osteoporotic spine models treated with Balloon Kyphoplasty (BKP) procedure. Series on Biomechanics, 36, 63-77. [15] Mazlan, M. H., Todo, M., Yonezawa, I. Takano, H., 2017. Biomechanical alteration of stress and strain distribution associated with vertebral fracture. Journal of Mechanical Engineering 2, 123-133. [16] Tanveer, M. Q., Mishra, G., Mishra, S., Sharma, R., 2022. Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts- a current review. Materials Today Proceedings 62, 100-108. [17] Mishra, P. K., Senthil, P., Adarsh, S., Anoop, M. S., 2021. An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts. Composites Communications 24, 100605. [18] Zhang, Z., Sun, Y., Sun, X., Li, Y., Liao, Z., Liu, W., 2016. Recent Advances in Finite Element Applications in Artificial Lumbar Disc Replacement. Journal of Biomedical Science and Engineering 9, 1–8. [19] Takano, H., Yonezawa, I., Todo, M., Mazlan, M. H., Sato, T., Kaneko, K., 2017. Biomechanical Study of Vertebral Compression Fracture Using Finite Element Analysis. Journal of Applied Mathematics and Physics 5, 953-965. [20] Jalil, M. H., Mazlan, M. H., Todo, M., 2017. Biomechanical Comparison of Polymeric Spinal Cages Using CT Based Finite Element Method. International Journal of Bioscience, Biochemistry and Bioinformatics 7, 110–117. [21] Mazlan, M. H., Todo, M., Ahmad, I. L., Takano, H., Yonezawa, I., Abdullah, A. H., Jalil, M. H., Nordin, N. D. D., 2020. Biomechanical evaluation of two different types of interbody cages in posterior lumbar interbody fusion. International Journal of Emerging Trends in Engineering Research 8, 221–226. [22] Rho, J. Y., Kuhn-Spearing, L., Zioupos, P., 1998. Mechanical properties and the hierarchical structure of bone. Medical Engineering and Physics 20, 92-102. [23] Salleh, N. S. M., Mazlan, M. H., Abdullah, A. H., Jalil, M. H., Takano, H., Nordin, N. D. D., 2021. Design and analysis of infill density effects on interbody fusion cage construct based on finite element analysis. 1st National Biomedical Engineering Conference, Institute of Electrical and Electronics Engineers, New York City, 25–29. [24] Fernandez-Vicente, M., Calle, W., Ferrandiz, S., Conejero, A., 2016. Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing. 3D Printing and Additive Manufacturing 3, 183-192.
|
|
| Date published: 2024-04-23
(Price of one pdf file: 39.00 BGN/20.00 EUR)