Биомеханические аспекты подводной части в плавании после старта и поворотов: Систематический обзор
Б. Ангелов
Резюме: Цель: Целью представленного исследования является изучение доступной информации об эффектах подводной части в плавании. В последние годы с продвижением и улучшением технических возможностей видеоанализа обороты и подводная часть занимают все большую часть достижений соперников. Методы: Систематический поиск литературы проводился через две электронные базы данных в соответствии с руководящими принципами PRISMA для оценки качества включенных исследований. Некоторые исследования были сосредоточены на видеоанализе подводной части плавания, выполненном с толчкового старта или стартового блока. Биомеханический анализ подводной части включал параметры биения (длина, частота и амплитуда), а также выбранную сегментарную кинематику. Результаты: Информация об детерминантах производительности UUS была противоречивой, отчасти из-за несоответствий в определении кинематических параметров. Должны быть проведены дальнейшие исследования, в которых автоматические системы фиксации движения применяются для анализа подводной части на вышеупомянутых условиях.
Ключови думи: Биомеханика; старты; плавание; повороты; подводный
Литература: (click to open/close) | [1] Mooney R, Corley G, Godfrey A, Os-borough C, Quinlan LR, ÓLaighin G., 2015. Application of video-based methods for competitive swimming analysis: a systematic review. Sport Exerc Med Open J. 1, 5, 133-150. [2] Arellano, R., Ruiz-Navarro, J. J., Barbosa, T. M., López-Contreras, G., Morales-Ortíz, E., Gay, A., López-Belmonte, Ó., González-Ponce, Á. & Cuenca-Fernández, F., 2022. Are the 50 m Race Segments Changed From Heats to Finals at the 2021 European Swimming Championships? Frontiers in Physiology, 13, 1–24. https://doi.org/10.3389/fphys.2022.797367 [3] Vennell, R.; Pease, D.; Wilson, B., 2006. Wave drag on human swimmers. J. Biomech., 39, 664–671. [4] Veiga, S., Lorenzo, J.,Trinidad, A., Pla, R., Fallas-Campos, A., de la Rubia, A., 2022. Kinematic Analysis of the Underwater Undulatory Swimming Cycle: A Systematic and Synthetic Review. Int.J. Environ. Res. Public Health, 19, 12196. https://doi.org/10.3390/ijerph191912196. [5] Veiga, S.; Roig, A.; Gómez-Ruano, M.A., 2016. Do faster swimmers spend longer underwater than slower swimmers at World Championships? Eur. J. Sport Sci., 16, 919–926. [CrossRef] 5. Veiga, S., Roig, A. Effect of the starting and turning performances on the subsequent swimming parameters of elite swimmers. Sports Biomech. 2017, 16, 34–44. [6] Ruiz-Navarro, J. J., Cuenca-Fernández, F., Sanders, R. & Arellano, R., 2022. The determinant factors of undulatory underwater swimming performance: A systematic review. Journal of Sports Sciences, 40,11, 1243–1254. https://doi.org/10.1080/02640414.2022.2061259 [7] Higgs, A. J., Pease, D. L., Sanders, R. H., 2017. Relationships between kinematics and undulatory underwater swimming performance. Journal of Sports Sciences, 35,10, 995–1003. [8] Connaboy, C., Coleman, S., Moir, G., Sanders, R., 2010. Measures of reliability in the kinematics of maximal undulatory underwater swimming. Medicine and Science in Sports and Exercise, 42, 4, 762–770. https://doi.org/10.1249/MSS.0b013e3181badc68 [9]Von Loebbecke, A., Mittal, R., Mark, R., Hahn, J., 2009. A computational method for analysis of underwater dolphin kick hydrodynamics in human swimming. Sports Biomech. 2009, 8, 60–77. [10] Shimojo, H., Gonjo, T., Sakakibara, J., Sengoku, Y., Sanders, R. Takagi, H., 2019. A quasi three-dimensional visualization of unsteady wake flow in human undulatory swimming. J. Biomech., 93, 60–69. [11]Atkinson, R.R., Dickey, J.P., Dragunas, A., Nolte, V., 2014. Importance of sagittal kick symmetry for underwater dolphin kick performance, Hum. Mov. Sci., 33, 298–311. [12.] Matsuda, Y.; Kaneko, M.; Sakurai, Y.; Akashi, K.; Yasuo, S., 2021. Three-dimensional lower-limb kinematics during undulatory underwater swimming. Sports Biomech., 17, 1–15 [13] Arellano, R.; Pardillo, S.; Gavilán, A., 2002. Underwater undulatory swimming: Kinematic characteristics, vortex generation and application during the start, turn and swimming strokes. In Proceedings of the XXth International Symposium on Biomechanics in Sports; Universidad de Extremadura: Caceras, Spain, 29–41. [14] Ikeda, Y., Ichikawa, H., Shimojo, H., Nara, R., Baba, Y., Shimoyama, Y., 2021. Relationship between dolphin kick movement in humans and velocity during undulatory underwater swimming. J. Sports Sci., 39, 1497–1503. [15] Atkinson, R.R., Dickey, J.P., Dragunas, A., Nolte, V., 2014. Importance of sagittal kick symmetry for underwater dolphin kick performance. Hum. Mov. Sci., 33, 298–311. [16] Higgs, J., Pease, L., Sanders, H., 2017. Relationships between kinematics and undulatory underwater swimming performance. J. Sports Sci., 35, 995–1003 [17] Wadrzyk, L., Staszkiewicz, R., Zeglen, M., Kryst, L,2021. Relationship between somatic build and kinematic indices of underwater undulatory swimming performed by young male swimmers. Int. J. Perform. Anal. Sport., 21, 435–450. [18] Wadrzyk, L., Staszkiewicz, R., Kryst, L., Zeglen, M., 2019. Gender effect on underwater undulatory swimming technique of young competitive swimmers. Acta Bioeng. Biomech., 21, 3–11. [19] Yamakawa, K., Shimojo, H., Takagi, H., Sengoku, Y., 2022. Changes in kinematics and muscle activity with increasing velocity during underwater undulatory swimming. Front. Sports Act. Living, 15, 829618. [20] Dimitrova, B., 2013. Synchronized swimming – theoretical concept of the critical training zone. Sport Mont, XI (37-38-39), 41-47. [21] Shimojo, H., Sengoku, Y., Miyoshi, T., Tsubakimoto, S., Takagi, H., 2014. Effect of imposing changes in kick frequency on kinematics during undulatory underwater swimming at maximal effort in male swimmers. Hum. Mov. Sci., 38, 94–105. [22] Hochstein, S., Blickhan, R., 2014. Body movement distribution with respect to swimmer’s glide position in human underwater undulatory swimming. Hum. Mov. Sci., 38, 305–318. [23] Dimitrova, B., 2019. Artistichno pluvane v obrazovatelnata sistema. [In Bulgarian]. Sofiya, Izd. Avangard Prima: 78-80. ISBN: 978-619-239-149-2. [24] Hochstein, S., Blickhan, R. 2011. Vortex re-capturing and kinematics in human underwater undulatory swimming. Hum. Mov. Sci., 30, 998–1007. [25] Webb, P.W.; Kostecki, P.T.; Stevens, E.D. The effect of size and swimming speed on locomotor kinematics of rainbow trout. J. Exp. Biol. 1984, 109, 77–95.
|
|
| Дата на публикуване: 2024-08-01
(Price of one pdf file: 39.00 BGN/20.00 EUR)