The usefulness of red blood cell osmotic gradient deformability (osmoscan) measurements in surgical research: A single-center experience
A. Varga

, A.A. Matrai

, N. Nemeth
Резюме: Objective: Red blood cell (RBC) deformability is an essential micro-rheological parameter playing an important role in blood flow, especially in microcirculation. In the last 15 years, we collected experiences in methodological standardization, comparative hemorheology and experimental and clinical research using the osmotic gradient deformability (osmoscan) method. In this paper we aim to overview the main findings, focusing on the information content of the osmoscan parameters in various pathophysiological processes. Materials and Methods: The conventional ektacytometry test describes RBCs’ elongation index in the function of shear stress, while the osmoscan tests are performed in the function of osmolality at a constant shear stress. The result is the well-defined elongation index (EI) – osmolality (O) curve. The EI-O curve can be characterized by several calculated parameters that show alteration in various pathophysiological processes. Results: The magnitude of changes in conventional and osmoscan deformability values can be different from each other, depending on the determinant noxa (e.g., damage by free radicals, cell-structure/morphology alterations, mechanical, thermal or metabolic effects, etc.). Discussion: Red blood cell osmotic gradient deformability measurement provides much more detailed information about the deformability of the erythrocytes, being useful in various research (both clinical and experimental), focusing on micro-rheological alterations. The standard settings of the measurement conditions are highly important to have comparable results. Conclusion: The presented experiences may call attention to the usefulness of parallel investigation of conventional and osmotic gradient deformability.
Series on Biomechanics, Vol.39, No.1 (2025), 3-8
DOI: 10.7546/SB.01.01.2025
Ключови думи: Hemorheology; osmotic gradient deformability; red blood cell deformability; surgical research
Литература: (click to open/close) | [1] Cokelet, G.R., Meiselman, H.J. 2007. Macro- and micro-rheological properties of blood. In Handbook of Hemorheology and Hemodynamics; Baskurt, O.K., Hardeman, M.R., Rampling, M.W., Meiselman. H.J., Eds.; IOS Press: Amsterdam, The Netherlands, 45-71. [2] Baskurt, O.K., 2007. Mechanisms of blood rheology alterations. In Handbook of Hemorheology and Hemodynamics; Baskurt, O.K., Hardeman, M.R., Rampling, M.W., Meiselman. H.J., Eds.; IOS Press: Amsterdam, The Netherlands, 170-190. [3] Antonova, N., Tsiberkin, K., Podtaev, S., Paskova, V., Velcheva, I., Chaushev, N., 2016. Comparative study between microvascular tone regulation and rheological properties of blood in patients with type 2 diabetes mellitus. Clin. Hemorheol. Microcirc. 64,4, 837-844. [4] Nemeth, N., Fulesdi, B., 2016. Concerning hemorheological disturbances in sepsis. De omnibus dubitandum est... Series on Biomechanics. 30,1, 20-26. [5] Brun, J.F., Varlet-Marie, E., Myzia, J., Raynaud de Mauverger, E., Pretorius, E., 2021. Metabolic influences modulating erythrocyte deformability and eryptosis. Metabolites. 12,1, 4. [6] Alexy, T., Detterich, J., Connes, P., Toth, K., Nader, E., Kenyeres, P., Arriola-Montenegro, J., Ulker, P., Simmonds, M.J., 2022. Physical properties of blood and their relationship to clinical conditions. Front. Physiol. 13, 906768. [7] Antonova, N., Velcheva, I., Paskova, V., 2022. Hemorheological and microvascular disturbances in patients with type 2 diabetes mellitus. Clin. Hemorheol. Microcirc. 81, 4, 325-341. [8] Reinhart, W.H., Piety, N.Z., Goede, J.S., Shevkoplyas, S.S., 2015. Effect of osmolality on erythrocyte rheology and perfusion of an artificial microvascular network. Microvasc. Res. 98, 102-107. [9] Brun, J-F., Varlet-Marie, E., Myzia, J., Mercier, J., Raynaud de Mauverger, E., 2022. Extended physiological functions for erythrocyte deformability and aggregation beyond regulation of oxygen delivery. Series on Biomechanics. 36, 1, 7-20. [10] Meiselman, H.J., 1981. Morphological determinants of red blood cell deformability. Scand. J. Clin. Lab. Invest., 41(Suppl. 156), 27-34. [11] Feo, C., Phillips, W.M.,1982. The influence of suspension osmolality and erythrocyte volume on cell deformability. Nouv. Rev. Fr. Hematol. 24, 295-299. [12] Linderkamp, O., Meiselman, H.J., 1982. Geometric, osmotic, and membrane mechanical properties of density-separated human red cells. Blood. 59, 1121-1127. [13] Hardeman, M.R., Goedhart, P.T., Shin, S., 2007. Methods in hemorheology. In Handbook of Hemorheology and Hemodynamics; Baskurt, O.K., Hardeman, M.R., Rampling, M.W., Meiselman, H.J., Eds.; IOS Press: Amsterdam, The Netherlands, 242-266. [14] Clark, M.R., Mohandas, N., Shohet, S.B., 1983. Osmotic gradient ektacytometry: comprehensive characterization of red cell volume and surface maintenance. Blood. 61, 899-910. [15] Johnson, R.M., Ravindranath, Y., 1996. Osmotic scan ektacytometry in clinical diagnosis. J. Pediatr. Hematol. Oncol. 18, 122-129. [16] Lazarova, E., Gulbis, B., Oirschot, B.V., van Wijk, R., 2017. Next-generation osmotic gradient ektacytometry for the diagnosis of hereditary spherocytosis: interlaboratory method validation and experience. Clin. Chem. Lab. Med. 55, 394-402. [17] Llaudet-Planas, E., Vives-Corrons, J.L., Rizzuto, V., Gómez-Ramírez, P., Sevilla Navarro, J., Coll Sibina, M.T., García-Bernal, M., Ruiz Llobet, A., Badell, I., Velasco-Puyó, P., Dapena, J.L., Mañú-Pereira, M.M., 2018. Osmotic gradient ektacytometry: A valuable screening test for hereditary spherocytosis and other red blood cell membrane disorders. Int. J. Lab. Hematol. 40, 1, 94-102. [18] Parrow, N.L., Violet, P.C., Tu, H., Nichols, J., Pittman, C.A., Fitzhugh, C., Fleming, R.E., Mohandas, N., Tisdale, J.F., Levine, M., 2018. Measuring deformability and red cell heterogeneity in blood by ektacytometry. J. Vis. Exp. 131, e56910. [19] Huang, Y.C., Hsu, C.C., Wang, J.S., 2019. High-intensity interval training improves erythrocyte osmotic deformability. Med. Sci. Sports Exerc. 51, 7, 1404-1412. [20] Hernández, C.A., Peikert, K., Qiao, M., Darras, A., de Wilde, J.R.A., Bos, J., Leibowitz, M., Galea, I., Wagner, C., Rab, M.A.E., Walker, R.H., Hermann, A., van Beers, E.J., van Wijk, R., Kaestner, L., 2024. Osmotic gradient ektacytometry - a novel diagnostic approach for neuroacanthocytosis syndromes. Front. Neurosci. 18, 1406969. [21] Nemeth, N., Kiss, F., Miszti-Blasius, K., 2015. Interpretation of osmotic gradient ektacytometry (osmoscan) data: a comparative study for methodological standards. Scand. J. Clin. Lab. Invest. 75, 3, 213-222. [22] Nemeth, N., Berhes, M., Kiss, F., Hajdu, E., Deak, A., Molnar, A., Szabo, J., Fulesdi, B., 2015. Early hemorheological changes in a porcine model of intravenously given E. coli induced fulminant sepsis. Clin. Hemorheol. Microcirc. 61, 3, 479-496. [23] Szentkereszty, Z., Kotan, R., Kiss, F., Klarik, Z., Posan, J., Furka, I., Sapy, P., Miko, I., Peto, K., Nemeth, N. 2014. Effects of various drugs (flunixin, pentoxifylline, enoxaparin) modulating micro-rheological changes in cerulein-induced acute pancreatitis in the rat. Clin. Hemorheol. Microcirc. 57, 4, 303-314. [24] Nemeth, N., Peto, K., Deak, A., Sogor, V., Varga, G., Tanczos, B., Balog, K., Csiszko, A., Godo, Z., Szentkereszty, Z., 2016. Hemorheological factors can be informative in comparing treatment possibilities of abdominal compartment syndrome. Clin. Hemorheol. Microcirc. 64, 4, 765-775. [25] Nemeth, N., Kiss, F., Klarik, Z., Toth, E., Mester, A., Furka, I., Miko, I., 2014. Simultaneous investigation of hemodynamic, microcirculatory and arterio-venous micro-rheological parameters in infrarenal or suprarenal aortic cross-clamping model in the rat. Clin. Hemorheol. Microcirc. 57, 4, 339-353. [26] Varga, G., Ghanem, S., Szabo, B., Nagy, K., Pal, N., Tanczos, B., Somogyi, V., Barath, B., Deak, A., Peto, K., Nemeth, N., 2019. Renal ischemia-reperfusion-induced metabolic and micro-rheological alterations and their modulation by remote organ ischemic preconditioning protocols in the rat. Clin. Hemorheol. Microcirc. 71, 2, 225-236. [27] Nemeth, N., Peto, K., Magyar, Z., Klarik, Z., Varga, G., Oltean, M., Mantas, A., Czigany, Z., Tolba, R.H., 2021. Hemorheological and microcirculatory factors in liver ischemia-reperfusion injury - An update on pathophysiology, molecular mechanisms and protective strategies. Int. J. Mol. Sci. 22, 1864. [28] Fazekas, L.A., Szabo, B., Szegeczki, V., Filler, C., Varga, A., Godo, Z.A., Toth, G., Reglodi, D., Juhasz, T., Nemeth, N., 2023. Impact assessment of pituitary adenylate cyclase activating polypeptide (PACAP) and hemostatic sponge on vascular anastomosis regeneration in rats. Int. J. Mol. Sci. 24, 23, 16695. [29] Nemeth, N., Kiss, F., Klarik, Z., Miko, I. 2014. Comparative osmotic gradient ektacytometry data on inter-species differences of experimental animals. Clin. Hemorheol. Microcirc. 57, 1, 1-8. [30] Klarik, Z., Kiss, F., Miko, I., Nemeth, N., 2023. Aorto-porto-caval micro-rheological differences of red blood cells in laboratory rats: further deformability and ektacytometrial osmoscan data. Clin. Hemorheol. Microcirc. 53, 3, 217-29. [31] Varga, A., Matrai, A.A., Barath, B., Deak, A., Horvath, L., Nemeth, N., 2022. Interspecies diversity of osmotic gradient deformability of red blood cells in human and seven vertebrate animal species. Cells. 11, 8, 1351. [32] Kiss, F., Toth, E., Miszti-Blasius, K., Nemeth, N., 2016. The effect of centrifugation at various g force levels on rheological properties of rat, dog, pig and human red blood cells. Clin. Hemorheol. Microcirc. 62, 3, 215-227. [33] Nemeth, N., Sogor, V., Kiss, F., Ulker, P., 2016. Interspecies diversity of erythrocyte mechanical stability at various combinations in magnitude and duration of shear stress, and osmolality. Clin. Hemorheol. Microcirc. 63, 4, 381-398. [34] Matrai, A.A., Varga, G., Tanczos, B., Barath, B., Varga, A., Horvath, L., Bereczky, Z., Deak, A., Nemeth, N., 2021. In vitro effects of temperature on red blood cell deformability and membrane stability in human and various vertebrate species. Clin. Hemorheol. Microcirc. 78, 3, 291-300. [35] Nemeth, N., 2020. Haemorheologiai alapismeretek [Basics of hemorheology]; Debrecen University Press: Debrecen, Hungary. In Hungarian [36] Matrai, A.A., Varga, A., Bedocs-Barath, B., Vanyolos, E., Orban-Kalmandi, R., Loczi, L., Bagoly, Z., Jouppila, A., Lassila, R., Nemeth, N., Deak, A., 2024. Heparin-like effect of a dual antiplatelet and anticoagulant (APAC) agent on red blood cell deformability and aggregation in an experimental model. J. Thromb. Thrombolysis. 57, 8, 1329-1338. [37] Baskurt, O.K., Hardeman, M.R., Uyuklu, M., Ulker, P., Cengiz, M., Nemeth, N., Shin, S., Alexy, T., Meiselman, H.J., 2009. Parameterization of red blood cell elongation index--shear stress curves obtained by ektacytometry. Scand. J. Clin. Lab. Invest. 69, 7, 777-788. [38] Heo, Y., Jung, H., Shin, S., 2015. Osmotic deformability of erythrocytes at various shear stresses. Clin. Hemorheol. Microcirc. 59,3, 211-218.
|
|
| Дата на публикуване: 2025-03-25
(Price of one pdf file: 39.00 BGN/20.00 EUR)