[1] Baker, S.A., Hwang, S.J., Blair, P.J., Sireika, C., Wei, L., Ro, S., Ward, S.M., Sanders, K.M., 2021. Ca2+ transients in ICC-MY define the basis for the dominance of the corpus in gastric pacemaking. Cell calcium 99, 102472. [2] Foong, D., Zhou, J., Zarrouk, A., Ho, V., O’Connor, M.D., 2020. Understanding the Biology of Human Interstitial Cells of Cajal in Gastrointestinal Motility. Int J Mol Sci 21, 12, 4540. [3] Ehlert, F.J., Pak, K.J., Griffin, M.T., 2012. Muscarinic agonists and antagonists: effects on gastrointestinal function. Handbook of experimental pharmacology, 208, 343–374. [4] Janssen, P., Karlsson, L.K., Nielsen, M.A., Gillberg, P.G., Hultin, L., 2010. Effect of muscarinic and nicotinic receptor antagonism on rat gastric motor activity. Pharmacology, 85, 5, 272–279. [5] Ruggieri, M.R., Braverman, A.S., Vegesna, A.K., Miller, L.S., 2014. Nicotinic receptor subtypes mediating relaxation of the normal human clasp and sling fibers of the upper gastric sphincter. Neurogastroenterology and motility 26,7, 1015–1025. [6] Vural, I.M., Ozturk Fincan, G.S., Bozkurt, N.B., Ercan, Z.S., Sarioglu, Y., 2009. Role of nicotinic acetylcholine receptor subtypes on nicotine-induced neurogenic contractile response alternation in the rabbit gastric fundus. European journal of pharmacology 602, 2-3, 395–398. [7] Kondo, T., Nakajima, M., Teraoka, H., Unno, T., Komori, S., Yamada, M., Kitazawa, T., 2011. Muscarinic receptor subtypes involved in regulation of colonic motility in mice: functional studies using muscarinic receptor-deficient mice. European journal of pharmacology, 670, 1, 236–243. [8] Lee, S. E., Kim, D. H., Son, S. M., Choi, S. Y., You, R. Y., Kim, C. H., Choi, W., Kim, H. S., Lim, Y. J., Han, J. Y., Kim, H. W., Yang, I. J., Xu, W. X., Lee, S. J., Kim, Y. C., & Yun, H. Y., 2020. Physiological function and molecular composition of ATP-sensitive K+ channels in human gastric smooth muscle. Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi 56, 0, 29–45. [9] Sakamoto, T., Unno, T., Kitazawa, T., Taneike, T., Yamada, M., Wess, J., Nishimura, M., Komori, S., 2007. Three distinct muscarinic signalling pathways for cationic channel activation in mouse gut smooth muscle cells. The Journal of physiology 582, Pt 1, 41–61. [10] Tanahashi, Y., Komori, S., Matsuyama, H., Kitazawa, T., Unno, T., 2021. Functions of Muscarinic Receptor Subtypes in Gastrointestinal Smooth Muscle: A Review of Studies with Receptor-Knockout Mice. International journal of molecular sciences 22, 2, 926. [11] Bekkelund, M., Sangnes, D.A., Hatlebakk, G.J, Aabakken, L. 2019. Pathophysiology of idiopathic gastroparesis and implications for therapy. Scand J Gastroenterol 54, 1, 8–17. [11] Camilleri, M., Grover, M., Farrugia, G., 2012. What are the important subsets of gastroparesis? Neurogastroenterol Motil 24, 7, 597-603. [12] Coulson, F.R., Jacoby, D.B., Fryer, A.D., 2002. Increased function of inhibitory neuronal M2 muscarinic receptors in trachea and ileum of diabetic rats. British journal of pharmacology, 135, 6, 1355–1362. [13] Moraveji, S., Bashashati, M., Elhanafi, S., Sunny, J., Sarosiek, I., Davis, B., Torabi, A., McCallum, R.W., 2016. Depleted interstitial cells of Cajal and fibrosis in the pylorus: Novel features of gastroparesis. Neurogastroenterology and Motility 28, 7, 1048–1054. [14] Uchiyama, T., Chess-Williams, R., 2004. Muscarinic receptor subtypes of the bladder and gastrointestinal tract. Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi 40, 6, 237–247. [15] Mehedinţeanu, A.M., Mirea, C.S., Stovicek, P.O., Schenker, M., Stancu, M.I., Ciurea, A.M., Streba, L., Istrate-Ofiţeru, A.M., Sas, T.N., Vere, C.C., 2021. Expression of M3 muscarinic acetylcholine receptors in gastric cancer. Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie 62,4, 1001–1010. [16] Tsymbalyuk, O.V., Kosterin, S.O., 2012. Na+,K+-ATPase, endogenous cardiosteroids and their transducer role. The Ukrainian Biochemical Journal 84,1, 5-17 (in Ukrainian) [17] Barlow, J.M., Goss, B.C., Hansel, S.L., Kolbe, A.B., Rackham, J.L., Bruining, D.H., Fletcher, J.G., 2015. CT enterography: technical and interpretive pitfalls. Abdominal imaging 40,5, 1081–1096. [18] Khalaf, A., Hoad, C.L., Menys, A., Nowak, A., Taylor, S.A., Paparo, S., Lingaya, M., Falcone, Y., Singh, G., Spiller, R.C., Gowland, P.A., Marciani, L., Moran, G.W., 2018. MRI assessment of the postprandial gastrointestinal motility and peptide response in healthy humans. Neurogastroenterology and motility: the official journal of the European Gastrointestinal Motility Society, 30,1, 10.1111/nmo.13182. [19] Orthey, P., Dadparvar, S., Kamat, B., Parkman, H.P., Maurer, A.H., 2020. Using gastric emptying scintigraphy to evaluate antral contractions and duodenal bolus propagation. American journal of physiology. Gastrointestinal and liver physiology 318,1, G203–G209. [20] Bohach, P.H., Pidhorna, L.A. 1981. Analitychnyi opys skorochen hladkomiazovykh klityn. Dopovidi AN URSR 12, B, 55-58. (in Ukrainian) [21] Burdyga, T.V., Kosterin, S.A., 1991, Kinetic analysis of smooth muscle relaxation. Gen Physiol Biophys 10, 6, 589–598. [22] Bursztyn, L., Eytan, O., Jaffa, A.J., Elad, D., 2007. Mathematical model of excitation-contraction in a uterine smooth muscle cell. Am J Physiol. Cell Physiol 292,5, C1816–C1829. [23] Bursztyn, L., Eytan, O., Jaffa, A.J., Elad, D., 2007. Modeling myometrial smooth muscle contraction. Ann N Y Acad Sci 1101, 110–138. [24] Kosterin, S.O., Babich, L.G., Shlykov, S.G., Danylovych, Iu.V., Veklich, Т.О., Mazur, Yu.Yu. Biochemical properties and regulation of smooth muscle cell Са2+-transporting systems. К.: Science opinion, 2016. 210р (in Ukrainian) [25] Kosterin. S., Tsymbalyuk, O., Holden, O., 2021. Multiparameter analysis of mechanokinetics of the contractile response of smooth muscles. Series on Biomechanics 35,1, 14-30. [26] Stålhand, J., Klarbring, A., Holzapfel, G.A., 2008. Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains. Progress in Biophysics and Molecular Biology 96,1-3, 465–481. [27] Tsymbalyuk, O.V., Kosterin, S.O., 2012. Thermomechanokinetics of viscoelastic deformation of smooth muscles in the rat gastrointestinal tract. I. Dynamic properties of the stretch in stomach smooth muscles. Studia Biologica 6,2, 87–98. (in Ukrainian) [28] Tsymbalyuk, O.V., Kosterin, S.O., 2012. Thermomechanokinetics of viscoelastic deformation of smooth muscles in the rat gastrointestinal tract. II. Thermomechanokinetics of hysteresis of stomach and large intestine smooth muscles. Studia Biologica 6,3, 73–84 (in Ukrainian) [29] Tsymbalyuk, O.V., Kosterin, S.O., 2013. Thermomechanokinetics of viscoelastic deformation of smooth muscles in rat gastroitestinal tract. III. The work of the viscoelastic stretch of antral stomach smooth muscles. Studia Biologica 7,1, 21-30. (in Ukrainian) [30] Tsymbalyuk, O.V., Kosterin., S.O., 2013. The application of the Wiegand-Snyder equation to the thermodynamic interpretation of highly elastic deformation of gastric smooth muscles. Dopovidi NAN Ukrainy 6, 162-167. (In Ukrainian) [31] Tsymbalyuk, O., Kosterin, S., 2021. Mechanokinetics and thermodynamics of highly elastic deformation of gastric smooth muscles under chronic intake of TiO2 nanocolloid. Series on Biomechanics 35, 4, 3-20. [32] Milanov, M.P., Stoyanov, I.N., Boev, K.K., 1984. Electro-mechanical coupling in the complex stomach smooth muscles. General Pharmacology 15, 2, 99–105. [33] Park, K.S., Cho, K.B., Hwang, I.S., Park, J.H., Jang, B.I., Kim, K.O., Jeon, S.W., Kim, E.S., Park, C.S., Kwon, J.G., 2016. Characterization of smooth muscle, enteric nerve, interstitial cells of Cajal, and fibroblast-like cells in the gastric musculature of patients with diabetes mellitus. World Journal of Gastroenterology 22,46, 10131-10139. [3] Chen, Y., Wang, H., Li, H., Liu, S., 2018. Long-Pulse Gastric Electrical Stimulation Repairs Interstitial Cells of Cajal and Smooth Muscle Cells in the Gastric Antrum of Diabetic Rats. Gastroenterol Res Pract, 6309157. [35] Cobine, C.A., Hannah, E.E., Zhu, M.H., Lyle, H.E., Rock, J.R., Sanders, K.M., Ward, S.M., Keef, K.D., 2017. ANO1 in intramuscular interstitial cells of Cajal plays a key role in the generation of slow waves and tone in the internal anal sphincter. J Physiol 595, 6, 2021-2041. [36] Means, S.A., Sneyd, J., 2010. Spatio-temporal calcium dynamics in pacemaking units of the interstitial cells of Cajal. Journal of Theoretical Biology 267, 2, 137-152. [37] Szymański, J., Janikiewicz, J., Michalska, B., Patalas-Krawczyk, P., Perrone, M., Ziółkowski, W., Duszyński, J., Pinton, P., Dobrzyń, A., Więckowski, M.R., 2017. Interaction of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure. International Journal of Molecular Sciences 18, 7, pii, E1576. [38] Drumm, B.T., Hwang, S.J., Baker, S.A., Ward, S.M., Sanders, K.M., 2019. Ca2+ signalling behaviours of intramuscular interstitial cells of Cajal in the murine colon. J Physiol 597,14, 3587-3617. [39] Patejdl, R., Noack, T., 2008. Calcium movement in smooth muscle and evaluation of graded functional intercellular coupling. Chaos (Woodbury, N.Y.) 28 , 10, 106311. [40] Zhang, C.H., Wang, P., Liu, D.H., Chen, C.P., Zhao, W., Chen, X., Chen, C., He, W.Q., Qiao, Y.N., Tao, T., Sun, J., Peng, Y.J., Lu, P., Zheng, K., Craige, S.M., Lifshitz, L.M., Keaney, J.F. Jr., Fogarty, K.E., ZhuGe, R., Zhu, M.S., 2016. The molecular basis of the genesis of basal tone in internal anal sphincter. Nature communications 7, 11358. [41] Fung, C., Unterweger, P., Parry, L.J., Bornstein, J.C., Foong, J.P., 2014. “VPAC1 receptors regulate intestinal secretion and muscle contractility by activating cholinergic neurons in guinea pig jejunum. Am J Physiol Gastrointest Liver Physiol. 306,9, G748-58. [42] Ono, N., Suzuki, S., Kawada, K., Yamaguchi, T., Azuma, Y. T., 2022. Stress decreases contraction of the colon, and the effects of stress are different among the regions of the colon. The Journal of veterinary medical science, 84, 8, 1061–1064. [43] Nasu, T., Takahashi, K., 2005. Effects of ouabain on contractions induced by manganese ions in Ca2+-free, isotonic solutions with varying concentrations of K+ in guinea-pig taenia coli. Fundamental & clinical pharmacology, 19, 3, 355–363. [44] Fornai, M., Colucci, R., Antonioli, L., Ippolito, C., Segnani, C., Buccianti, P., Marioni, A., Chiarugi, M., Villanacci, V., Bassotti, G., Blandizzi, C., Bernardini, N., 2014. Role of cyclooxygenase isoforms in the altered excitatory motor pathways of human colon with diverticular disease. British journal of pharmacology, 171, 15, 3728–3740. [45] Jones, B. S., Keightley, L. J., Harris, J. O., Wiklendt, L., Spencer, N. J., Dinning, P. G., 2021. Identification of neurogenic intestinal motility patterns in silver perch (Bidyanus bidyanus) that persist over wide temperature ranges. Neurogastroenterology and motility, 33, 5, e14037. [46] Tanahashi, Y., Komori, S., Matsuyama, H., Kitazawa, T., Unno, T., 2021. Functions of Muscarinic Receptor Subtypes in Gastrointestinal Smooth Muscle: A Review of Studies with Receptor-Knockout Mice. Int J Mol Sci., 22, 2, 926. [47] Wrzos, H. F., Tandon, T., Ouyang, A., 2004. Mechanisms mediating cholinergic antral circular smooth muscle contraction in rats. World journal of gastroenterology, 10, 22, 3292–3298.
|
|