Application of artificial intelligence and machine learning to study the structurebiological activity relationship
F. Sapundzhi

, S. Georgiev

, M. Lazarova

, M. Popstoilov
Резюме: Objective: This study aims to investigate the structure–biological activity relationship (SAR) of delta-opioid ligands using artificial intelligence and machine learning approaches, advancing previous efforts based on polynomial modeling. The goal is to establish nonlinear relationships between molecular docking results, binding energies, and biological activities, thereby improving predictive accuracy in drug design. Materials and methods: Three delta-opioid receptor (DOR) models were used: a theoretical model (PDB: 1ozc), a crystal structure model (PDB: 4ej4), and a homology-modeled structure. Docking studies were performed using software GOLD, and binding free energies were calculated using Molegro Molecular Viewer (MMV). Polynomial modeling was used as a baseline, while machine learning regression techniques, including k-Nearest Neighbors, Gradient Boosting, Random Forest, and Extremely Randomized Trees, were applied to capture nonlinear SARs. Model performance was evaluated using k-fold cross-validation and grid search optimization. Results: Among the tested models, Gradient Boosting exhibited the highest predictive accuracy, outperforming polynomial regression. Statistical metrics such as coefficient of determination R², root mean square error (RMSE), and sum of square errors (SSE) demonstrated the efficacy of the machine learning approach in capturing complex SARs across all three DOR models. Discussion: Machine learning algorithms provide a robust and efficient method for predicting SARs, enabling more precise identification of drug candidates. Compared to polynomial modeling, the proposed methods exhibit greater flexibility and reliability in uncovering nonlinear relationships. Conclusion: The integration of machine learning into SAR analysis enhances predictive capabilities, accelerating drug discovery and optimization. Future work will focus on extending these methods to other receptor-ligand systems and exploring additional algorithms.
Series on Biomechanics, Vol.39, No.1 (2025),74-84
DOI: 10.7546/SB.01.10.2025
Ключови думи: delta-opioid receptor; drug design; machine learning; molecular docking; Structurebiological activity relationship
Литература: (click to open/close) | [1] I. Muegge, A Bergner, J.M Kriegl, 2017. Computer-aided drug design at Boehringer Ingelheim, J. Comput. Aided Mol. Des. 31, 3, 275-285, https://doi.org/10.1007/s10822-016-9975-3 [2] M. Batool, B. Ahmad, S. Choi, 2019. A Structure-Based Drug Discovery Paradigm. International journal of molecular sciences, 20, 11, 2783. https://doi.org/10.3390/ijms20112783 [3] P. Aparoy, K. Kumar Reddy, P. Reddanna, 2012. Structure and ligand-based drug design strategies in the development of novel 5-LOX inhibitors. Curr. Med. Chem., 19, 22, 3763-3778, https://doi.org/10.2174/092986712801661112 [4] Tanos França, 2015. Homology modeling: an important tool for the drug discovery, Journal of Biomolecular Structure and Dynamics. 33, 8, 1780-1793, doi: 10.1080/07391102.2014.971429 [5] L. Ferreira, R. dos Santos, G. Oliva, A. Andricopulo, 2015. Molecular docking and structure-based drug design strategies. Molecules. 20:13384–13421. doi: 10.3390/molecules200713384. [6] A. Schön, N. Madani, A. Smith, J. Lalonde, E. Freire, 2011. Some binding-related drug properties are dependent on thermodynamic signature. Chemical biology and drug design. 77, 3, 161–165. https://doi.org/10.1111/j.1747-0285.2010.01075.x [7] Z. Cournia, B. Allen, W. Sherman, 2017. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations, Journal of Chemical Information and Modeling 57, 12, 2911-2937. DOI: 10.1021/acs.jcim.7b00564 [8] V. Sharma, S. Wakode, H. Kumar, 2021. Structure-and ligand-based drug design: Concepts, approaches, and challenges. Chemoinformatics and bioinformatics in the pharmaceutical sciences, 27-53. https://doi.org/10.1016/B978-0-12-821748-1.00004-X [9] C. Acharya, A. Coop, J. Polli, A. Mackerell Jr., 2011. Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Curr. Comput. Aided Drug Des. 7, 1,10–22. https://doi.org/10.2174/157340911793743547 [10] F. Gentile, J. Yaacoub, J. Gleave, et al., 2022. Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking. Nat Protoc 17, 672–697 https://doi.org/10.1038/s41596-021-00659-2 [11] T. Oliveira, M. Silva, E. Maia, A. Silva, A. Taranto, 2023. Virtual Screening Algorithms in Drug Discovery: A Review Focused on Machine and Deep Learning Methods. Drugs Drug Candidates. 2, 311-334. https://doi.org/10.3390/ddc2020017 [12] B. Neves, R. Braga, C. Melo-Filho, J. Moreira-Filho, E. Muratov, C. Andrade, 2018. QSAR-Based Virtual Screening:Advances and Applications in Drug Discovery.Front.Pharmacol. 9, 1275. https://doi.org/10.3389/fphar.2018.01275 [13] G. Sliwoski, S. Kothiwale, J. Meiler, E. Lowe, 2014. Computational methods in drug discovery. Pharmacological reviews. 66,1, 334-395. DOI: https://doi.org/10.1124/pr.112.007336 [14] K. Mak, M. Pichika, 2019. Artificial intelligence in drug development: Present status and future prospects. Drug Discov. Today. 24, 773–780. doi: 10.1016/j.drudis.2018.11.014. [15] D. Poole, A. Mackworth, R. Goebel, 1998. Computational Intelligence: A Logical Approach. New York: Oxford University Press. [16] C. Bishop, 2013. Model-based machine learning. Philos Trans. A Math. Phys. Eng. Sci. 371:20120222. doi: 10.1098/rsta.2012.0222. [17] M. Vasileva, G. Prandzhev, D. Dimitrov, Z. Gorcheva, 2024. Current state of application of Artificial Intelligence in preoperative MRI assessment of endometrial cancer a mini review. Series on Biomechanics 38, 4,127-132. doi: 10.7546/SB.17.04.2024. [18] A. Das, B. Lal, R. Manjunatha, 2022. Advances in Gravimetric Electronic Nose for Biomarkers Detection. Series on Biomechanics 36, 2,128-140. doi: 10.7546/SB.36.2022.02.13. [19] W. Duch, K. Swaminathan, J. Meller, 2007. Artificial intelligence approaches for rational drug design and discovery. Curr. Pharm. Des. 13,1497–1508. doi: 10.2174/138161207780765954. [20] K. Butler, D. Davies, H. Cartwright, O. Isayev, A. Walsh, 2018. Machine learning for molecular and materials science. Nature. 2018, 559, 547–555. doi: 10.1038/s41586-018-0337-2 [21] A. Jordan, 2018. Artifcial intelligence in drug design–the storm before the calm? ACS Med Chem Lett. https://doi.org/10.1021/acsmedchemlett.8b00500 [22] A. Goel, J. Davies, 2019 Artifcial intelligence. In: The Cambridge Handbook of Intelligence. Cambridge. [23] N. Pencheva, A. Bocheva, E. Dimitrov, C. Ivancheva, R. Radomirov, 1996. [Cys(O2NH2)2]enkephalin analogues and dalargin: selectivity for delta-opioid receptors. Eur J Pharmacol. 23, 304(1-3):99-108. doi: 10.1016/0014-2999(96)00083-0. [24] N. Pencheva, P. Milanov, L. Vezenkov, T. Pajpanova, E. Naydenova, 2004. Opioid profiles of Cys2-containing enkephalin analogues. Eur J Pharmacol. 13; 498(1-3):249-56. doi: 10.1016/j.ejphar.2004.07.059. [25] P. Milanov, N. Pencheva, 2011. Theoretical hyperbolic model of a partial agonism: explicit formulas for affinity, efficacy and amplification. Serdica J. Computing, 5, 333-358. [26] F. Sapundzhi, T. Dzimbova, P. Milanov, N. Pencheva, 2017. QSAR modelling and molecular docking studies of three models of delta opioid receptor J. Comput. Methods Molec. Design, 5, 2, 98-108. [27] G. Jones, P. Willett, R.Glen, A. Leach, R. Taylor, 1997. Development and validation of a genetic algorithm for flexible docking, Journal of Molecular Biology, 267, 3, 727-748, https://doi.org/10.1006/jmbi.1996.0897. [28] M. Verdonk, J. Cole, M. Hartshorn, C. Murray, R.Taylor, 2003. Improved protein-ligand docking using GOLD Proteins, 52, 609-623 doi: 10.1002/prot.10465. [29] R. Thomsen, M. Christensen, 2006. A new technique for high-accuracy molecular docking. J Med Chem. 49, 11, 3315-3321. doi: 10.1021/jm051197e. PMID: 16722650. [30] F. Sapundzhi, T. Dzimbova, 2019. A Study of QSAR based on Polynomial Modeling in Matlab. International Journal of Online and Biomedical Engineering 15, 15, 39–56. https://doi.org/10.3991/ijoe.v15i15.11566 [31] F. Sapundzhi, T. Dzimbova, P. Milanov, N. Pencheva, 2015. Determination of the relationship between the docking studies and the biological activity of delta-selective enkephalin analogues J. Comput. Methods Molec. Design, 5, 2, 98-108. [32] F. Sapundzhi, M. Lazarova, T. Dzimbova, S.Georgiev, 2023. An application of some machine learning methods for biological data modeling. Journal of Physics: Conference Series. 2675, 1, 012021. doi:10.1088/1742-6596/2675/1/01202 [33] F. Sapundzhi, M. Lazarova, T. Dzimbova, S. Georgiev. A. Ivanova, 2023. A structure-activity relationship modelling of opioid compounds by using machine learning. Journal of Physics: Conference Series. 2675, 1, 012032. doi:10.1088/1742-6596/2675/1/012032 [34] F. Sapundzhi, K. Prodanova, M. Lazarova, 2019. Survey of the scoring functions for protein-ligand docking AIP Conference Proceedings.2172,100008,1-6 https://doi.org/10.1063/1.5133601 [35] O. Kramer, 2013. K-Nearest Neighbors. Dimensionality Reduction with Unsupervised Nearest Neighbors. Intelligent Systems Reference Library, 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38652-7_2 [36] S. Piryonesi, T. El-Diraby, E. Tamer, 2020. Data Analytics in Asset Management: Cost-Effective Prediction of the Pavement Condition Index. Journal of Infrastructure Systems. 26, 1. 04019036. doi:10.1061/(ASCE)IS.1943-555X.0000512. [37] T. Hastie, R. Tibshirani, J. Friedman, 2009. Boosting and Additive Trees. The Elements of Statistical Learning (2nd ed.). New York: Springer. 337–384. [38] T. Austin, 2015. Exchangeable random measures, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Ann. Inst. H. Poincaré Probab. Statist. 51, 3, 842-861. [39] P. Geurts, D. Ernst, L. Wehenkel, 2006. Extremely randomized trees. Mach Learn 63, 3–42. https://doi.org/10.1007/s10994-006-6226-1. [40] G. Kuchava, M. Mantskava, 2021. Brain blood flow control with artificial intelligence. Series on Biomechanics 35, 2, 73-78.
|
|
| Дата на публикуване: 2025-03-25
(Price of one pdf file: 39.00 BGN/20.00 EUR)